Solveeit Logo

Question

Question: Let E = (2n + 1) (2n + 3) (2n + 5)…(4n – 3) (4n – 1) where n \> 1. then 2<sup>n</sup> Eis divisible ...

Let E = (2n + 1) (2n + 3) (2n + 5)…(4n – 3) (4n – 1) where n > 1. then 2n Eis divisible by

A

2nCn

B

4nC2n

C

2nCn/2

D

4nCn/2

Answer

4nC2n

Explanation

Solution

E = (2n +1) (2n + 3) (2n + 5)……(4n – 3) (4n – 1)

E =(2n)!(2n+1)(2n+2)(2n+3)(2n+4)(2n+5)....(4n1)4n(2n)!(2n+2)(2n+4)....(4n)\frac{(2n)!(2n + 1)(2n + 2)(2n + 3)(2n + 4)(2n + 5)....(4n - 1)4n}{(2n)!(2n + 2)(2n + 4)....(4n)}

E = (4n)!n!(2n)!n!2n(n+1)(n+2).....(2n)\frac{(4n)!n!}{(2n)!n!2^{n}(n + 1)(n + 2).....(2n)}

E = (4n)!n!(2n)!(2n)!2n\frac{(4n)!n!}{(2n)!(2n)!2^{n}} ̃ 2n E = n! 4nC2n

Hence 2nE is divisible by 4nC2n