Solveeit Logo

Question

Question: Let \( {E_1}(r) \) , \( {E_2}(r) \) and \( {E_3}(r) \) be the respective electric fields at a distan...

Let E1(r){E_1}(r) , E2(r){E_2}(r) and E3(r){E_3}(r) be the respective electric fields at a distance rr from a point charge QQ , an infinitely long wire with constant linear charge density λ\lambda and an infinite plane with uniform surface charge density σ\sigma . If E1(r0)=E2(r0)=E3(r0){E_1}({r_0}) = {E_2}({r_0}) = {E_3}({r_0}) at a distance r0{r_0} , then
(A) Q=4σπr02Q = 4\sigma \pi r_0^2
(B) r0=λ2πσ{r_0} = \dfrac{\lambda }{{2\pi \sigma }}
(C) E1(r02)=2E2(r02){E_1}\left( {\dfrac{{{r_0}}}{2}} \right) = 2{E_2}\left( {\dfrac{{{r_0}}}{2}} \right)
(D) E2(r02)=4E3(r02){E_2}\left( {\dfrac{{{r_0}}}{2}} \right) = 4{E_3}\left( {\dfrac{{{r_0}}}{2}} \right)

Explanation

Solution

Hint Equate equal expressions in pairs. Find the relationship between the charge distributions at distance r0{r_0} and at distance r02\dfrac{{{r_0}}}{2} i.e. for point charge, find the relationship between E1(r0){E_1}({r_0}) and E1(r02){E_1}\left( {\dfrac{{{r_0}}}{2}} \right) . Likewise for the other charge distributions.

Formula used: E1(r0)=Q4πεor02{E_1}\left( {{r_0}} \right) = \dfrac{Q}{{4\pi {\varepsilon _o}r_0^2}} where QQ is charge, εo{\varepsilon _o} is the permittivity of free space and r0{r_0} is the distance from the charge
E2(r0)=λ2πε0r0\Rightarrow {E_2}({r_0}) = \dfrac{\lambda }{{2\pi {\varepsilon _0}{r_0}}} and E3(r0)=σ2εo{E_3}({r_0}) = \dfrac{\sigma }{{2{\varepsilon _o}}} , where λ\lambda is the line charge density and σ\sigma is the surface charge density.

Complete step by step answer
Firstly, we write the equation of an electric field by a point charge QQ at a distance r0{r_0} . This is given by
E1(r0)=Q4πεor02\Rightarrow {E_1}({r_0}) = \dfrac{Q}{{4\pi {\varepsilon _o}r_0^2}} where εo{\varepsilon _o} is the permittivity of free space.
Similarly, we write the equation of an electric field for an infinite line charge of density λ\lambda at a distance r0{r_0} . This is given by
E2(r0)=λ2πεor0\Rightarrow {E_2}({r_0}) = \dfrac{\lambda }{{2\pi {\varepsilon _o}{r_0}}}
Finally,we write the equation of an electric field for an infinite surface charge of density σ\sigma at a distance r0{r_0} . This is written as
E3(r0)=σ2εo\Rightarrow {E_3}({r_0}) = \dfrac{\sigma }{{2{\varepsilon _o}}}
According to the question, all three equations are equal. Thus, we could equate any pair so as to simplify and compare with the options.
For option A, we equate E1{E_1} and E2{E_2} . Doing this we get,
Q4πεor02=σ2εo\Rightarrow \dfrac{Q}{{4\pi {\varepsilon _o}r_0^2}} = \dfrac{\sigma }{{2{\varepsilon _o}}}
To make QQ subject of the formula, multiply both sides by 4πεor024\pi {\varepsilon _o}r_0^2 , cancel out εo{\varepsilon _o} , and divide numerator and denominator by 2.
Hence, we get
Q=2σπr02\Rightarrow Q = 2\sigma \pi r_0^2 .
This is not the same as option A. Thus, option A is incorrect.
For option B, equating E1{E_1} and E3{E_3} we get
λ2πεor0=σ2εo\Rightarrow \dfrac{\lambda }{{2\pi {\varepsilon _o}{r_0}}} = \dfrac{\sigma }{{2{\varepsilon _o}}}
Cross multiplying and cancelling 2 and εo{\varepsilon _o} , we get
λ=σπr0\Rightarrow \lambda = \sigma \pi {r_0}
Rearranging the above equation we get,
r0=λσπ\Rightarrow {r_0} = \dfrac{\lambda }{{\sigma \pi }} which is not equal to option B.
Therefore, option B is incorrect.
For option C, we need to find E1(r02){E_1}\left( {\dfrac{{{r_0}}}{2}} \right) and E2(r02){E_2}\left( {\dfrac{{{r_0}}}{2}} \right) .
We do this by simply replacing r0{r_0} with r02\dfrac{{{r_0}}}{2} in E1(r0)=Q4πεor02{E_1}({r_0}) = \dfrac{Q}{{4\pi {\varepsilon _o}r_0^2}} .
This gives
E1(r02)=Q4πεor024=4Q4πεor02 E1(r02)=4E1(r0) \Rightarrow {E_1}\left( {\dfrac{{{r_0}}}{2}} \right) = \dfrac{Q}{{4\pi {\varepsilon _o}\dfrac{{r_0^2}}{4}}} = 4\dfrac{Q}{{4\pi {\varepsilon _o}r_0^2}} \\\ \Rightarrow {E_1}\left( {\dfrac{{{r_0}}}{2}} \right) = 4{E_1}({r_0}) \\\
Similarly,
E2(r02)=λ2πεor02=2λ2πεor0 E2(r02)=2E2(r0) \Rightarrow {E_2}\left( {\dfrac{{{r_0}}}{2}} \right) = \dfrac{\lambda }{{2\pi {\varepsilon _o}\dfrac{{{r_0}}}{2}}} = 2\dfrac{\lambda }{{2\pi {\varepsilon _o}{r_0}}} \\\ \Rightarrow {E_2}\left( {\dfrac{{{r_0}}}{2}} \right) = 2{E_2}({r_0}) \\\
This in turn, implies that
12E2(r02)=E2(r0)=E1(r0)\Rightarrow \dfrac{1}{2}{E_2}\left( {\dfrac{{{r_0}}}{2}} \right) = {E_2}({r_0}) = {E_1}({r_0}) .
Substituting 12E2(r02)\dfrac{1}{2}{E_2}\left( {\dfrac{{{r_0}}}{2}} \right) for E1(r0){E_1}({r_0}) in E1(r02)=4E1(r0){E_1}\left( {\dfrac{{{r_0}}}{2}} \right) = 4{E_1}\left( {{r_0}} \right) we get,
E1(r02)=2E2(r02){E_1}\left( {\dfrac{{{r_0}}}{2}} \right) = 2{E_2}\left( {\dfrac{{{r_0}}}{2}} \right)
This is equal to option (C).
Hence, the correct is option (C).

Note
Alternatively, in option C, from E2(r02)=2E2(r0){E_2}\left( {\dfrac{{{r_0}}}{2}} \right) = 2{E_2}\left( {{r_0}} \right) we can say that
E2(r02)=2×14×E1(r02){E_2}\left( {\dfrac{{{r_0}}}{2}} \right) = 2 \times \dfrac{1}{4} \times {E_1}\left( {\dfrac{{{r_0}}}{2}} \right) (since E2(r0)=E1(r0){E_2}({r_0}) = {E_1}({r_0}) ).
Simplifying further we get,
E1(r02)=2E2(r02){E_1}\left( {\dfrac{{{r_0}}}{2}} \right) = 2{E_2}\left( {\dfrac{{{r_0}}}{2}} \right) .