Question
Question: Let \( {{E}_{1}}=\left\\{ x\in R:x\ne 1,\dfrac{x}{x-1}=0 \right\\}\) and \({{E}_{2}}=\left\\{ x\in {...
Let {{E}_{1}}=\left\\{ x\in R:x\ne 1,\dfrac{x}{x-1}=0 \right\\} and {{E}_{2}}=\left\\{ x\in {{E}_{1}}:{{\sin }^{-1}}\left( {{\log }_{e}}\left( \dfrac{x}{x-1} \right) \right)\text{ is a real number} \right\\} .(Here the inverse of sine function assumes the value in the interval [2−π,2π]). Let the function f:E1→R is defined by f(x)=logex−1x and g:E1→R be defined as g(x)=sin−1(logex−1x) LIST−1
P. The range of f is
Q. The range of $g$ contains
R.The domain of fcontainsS.Thedomainofgis
LIST-II
1.$\left( -\infty ,\dfrac{1}{e} \right]\bigcup \left[ \dfrac{e}{e-1},\infty \right)$
2.\left( 0,1 \right)$$$$$
3.\left[ \dfrac{-1}{2},\dfrac{1}{2} \right]
4.$\left( -\infty ,0 \right)\bigcup \left( 0,\infty \right)
5.\left( -\infty ,\dfrac{e}{e-1} \right]$$$$$
6.\left( -\infty ,0 \right)\bigcup \left( \dfrac{1}{2},\dfrac{e}{e-1} \right) $$$$
Choose the correct option$$$$
A.P\to 4,Q\to 2,R\to 1,S\to 1
B. $P\to 3,Q\to 3,R\to 6,S\to 5
C. P\to 4,Q\to 2,R\to 1,S\to 6$$$$$
D. P\to 4,Q\to 3,R\to 6,S\to 5$$$$$
Solution
As E1 and E2 are the domains of the function f and g you can express them in intervals using the conditions inside them. Then you proceed to find ranges of f and g as given within their definition.$$$$
Complete step-by-step answer:
As given in the question E1 is defined as
{{E}_{1}}=\left\\{ x\in R:x\ne 1,\dfrac{x}{x-1}>0 \right\\}
So we can proceed with given condition inside the bracket,