Solveeit Logo

Question

Question: Let \[{E_1}\left( r \right)\], \[{E_2}\left( r \right)\] and \[{E_3}\left( r \right)\] be the respec...

Let E1(r){E_1}\left( r \right), E2(r){E_2}\left( r \right) and E3(r){E_3}\left( r \right) be the respective electric fields at a distance rr from a point charge QQ, an infinitely long wire with constant linear charge density λ\lambda , and an infinite plane with uniform surface charge density σ\sigma . If E1(r0)=E2(r0)=E3(r0){E_1}\left( {{r_0}} \right) = {E_2}\left( {{r_0}} \right) = {E_3}\left( {{r_0}} \right) at a given distance r0{r_0}, then:
A. Q=4σπr02Q = 4\sigma \pi r_0^2
B. r0=λ2πσ{r_0} = \dfrac{\lambda }{{2\pi \sigma }}
C. E1(r02)=2E2(r02){E_1}\left( {\dfrac{{{r_0}}}{2}} \right) = 2{E_2}\left( {\dfrac{{{r_0}}}{2}} \right)
D. E2(r02)=4E3(r02){E_2}\left( {\dfrac{{{r_0}}}{2}} \right) = 4{E_3}\left( {\dfrac{{{r_0}}}{2}} \right)

Explanation

Solution

We can use the formulae for the electric field due to a point charge at a distance, electric field at a distance from an infinitely long wire with constant linear charge density and electric field EE at a distance from an infinite plane with uniform surface charge density. Rewrite these formulae for the distance r0{r_0}. Solve these equations and derive the relations for the quantities given in the options and check which of the options is correct.

Formulae used:
The electric field EE due to a point charge qq at a distance rr is
E=14πε0qr2E = \dfrac{1}{{4\pi {\varepsilon _0}}}\dfrac{q}{{{r^2}}} ……. (1)
The electric field EE at a distance rr from an infinitely long wire with constant linear charge density λ\lambda is
E=14πε02λrE = \dfrac{1}{{4\pi {\varepsilon _0}}}\dfrac{{2\lambda }}{r} ……. (2)
The electric field EE at a distance rr from an infinite plane with uniform surface charge density σ\sigma is
E=σ2ε0E = \dfrac{\sigma }{{2{\varepsilon _0}}} ……. (3)

Complete step by step answer:
We have given that E1(r){E_1}\left( r \right) is the electric field at a distance rr from the point charge QQ, E2(r){E_2}\left( r \right) is the electric field from an infinitely long wire with constant linear charge density λ\lambda and E3(r){E_3}\left( r \right) is the electric field from an infinite plane with uniform surface charge density σ\sigma .From equations (1), (2) and (3), we can write
E1(r)=14πε0Qr2{E_1}\left( r \right) = \dfrac{1}{{4\pi {\varepsilon _0}}}\dfrac{Q}{{{r^2}}}
E2(r)=14πε02λr\Rightarrow {E_2}\left( r \right) = \dfrac{1}{{4\pi {\varepsilon _0}}}\dfrac{{2\lambda }}{r}
E3(r)=σ2ε0\Rightarrow {E_3}\left( r \right) = \dfrac{\sigma }{{2{\varepsilon _0}}}
Also at a distance r0{r_0}, we have
E1(r0)=E2(r0)=E3(r0){E_1}\left( {{r_0}} \right) = {E_2}\left( {{r_0}} \right) = {E_3}\left( {{r_0}} \right)

Let us consider the relation
E1(r0)=E3(r0){E_1}\left( {{r_0}} \right) = {E_3}\left( {{r_0}} \right)
Substitute 14πε0Qr02\dfrac{1}{{4\pi {\varepsilon _0}}}\dfrac{Q}{{r_0^2}} for E1(r0){E_1}\left( {{r_0}} \right) and σ2ε0\dfrac{\sigma }{{2{\varepsilon _0}}} for E3(r0){E_3}\left( {{r_0}} \right) in the above equation.
14πε0Qr02=σ2ε0\dfrac{1}{{4\pi {\varepsilon _0}}}\dfrac{Q}{{r_0^2}} = \dfrac{\sigma }{{2{\varepsilon _0}}}
Q=2σπr02\Rightarrow Q = 2\sigma \pi r_0^2 …… (4)
Hence, the option A is incorrect.

Let us consider the relation
E2(r0)=E3(r0){E_2}\left( {{r_0}} \right) = {E_3}\left( {{r_0}} \right)
Substitute 14πε02λr0\dfrac{1}{{4\pi {\varepsilon _0}}}\dfrac{{2\lambda }}{{{r_0}}} for E2(r0){E_2}\left( {{r_0}} \right) and σ2ε0\dfrac{\sigma }{{2{\varepsilon _0}}} for E3(r0){E_3}\left( {{r_0}} \right) in the above equation.
14πε02λr0=σ2ε0\dfrac{1}{{4\pi {\varepsilon _0}}}\dfrac{{2\lambda }}{{{r_0}}} = \dfrac{\sigma }{{2{\varepsilon _0}}}
r0=λπσ\Rightarrow {r_0} = \dfrac{\lambda }{{\pi \sigma }} …… (5)
Hence, option B is incorrect.

From equation (4), we can write
σ=Q2πr02\Rightarrow \sigma = \dfrac{Q}{{2\pi r_0^2}}
Substitute Q2πr02\dfrac{Q}{{2\pi r_0^2}} for σ\sigma in equation (5).
r0=λπ(Q2πr02)\Rightarrow {r_0} = \dfrac{\lambda }{{\pi \left( {\dfrac{Q}{{2\pi r_0^2}}} \right)}}
Q=2λr0\Rightarrow Q = 2\lambda {r_0}
Let us rewrite the equation of E1(r){E_1}\left( r \right) for the distance r02\dfrac{{{r_0}}}{2}.
E1(r02)=14πε0Q(r02)2{E_1}\left( {\dfrac{{{r_0}}}{2}} \right) = \dfrac{1}{{4\pi {\varepsilon _0}}}\dfrac{Q}{{{{\left( {\dfrac{{{r_0}}}{2}} \right)}^2}}}
E1(r02)=14πε0Qr02\Rightarrow {E_1}\left( {\dfrac{{{r_0}}}{2}} \right) = \dfrac{1}{{4\pi {\varepsilon _0}}}\dfrac{Q}{{r_0^2}}
Substitute 2λr02\lambda {r_0} for QQ in the above equation.
E1(r02)=14πε02λr0r02\Rightarrow {E_1}\left( {\dfrac{{{r_0}}}{2}} \right) = \dfrac{1}{{4\pi {\varepsilon _0}}}\dfrac{{2\lambda {r_0}}}{{r_0^2}}
E1(r02)=λ2πε0r0\Rightarrow {E_1}\left( {\dfrac{{{r_0}}}{2}} \right) = \dfrac{\lambda }{{2\pi {\varepsilon _0}{r_0}}} …… (6)
Let us rewrite the equation of E2(r){E_2}\left( r \right) for the distance r02\dfrac{{{r_0}}}{2}.
E2(r02)=14πε02λr02{E_2}\left( {\dfrac{{{r_0}}}{2}} \right) = \dfrac{1}{{4\pi {\varepsilon _0}}}\dfrac{{2\lambda }}{{\dfrac{{{r_0}}}{2}}}
E2(r02)=λπε0r0\Rightarrow {E_2}\left( {\dfrac{{{r_0}}}{2}} \right) = \dfrac{\lambda }{{\pi {\varepsilon _0}{r_0}}} …… (7)
From equations (6) and (7), we can write
E1(r02)=2E2(r02)\therefore{E_1}\left( {\dfrac{{{r_0}}}{2}} \right) = 2{E_2}\left( {\dfrac{{{r_0}}}{2}} \right)

Hence, the correct option is C.

Note: The formulae for the electric fields used in the solutions should be correct. The students should be careful while doing the calculations in the solution. If these calculations go wrong then we will not end with the correct derivations for the charge, distance or relations between the electric fields. Hence, the correct step by step calculations should be done in order to avoid the wrong answers.