Solveeit Logo

Question

Mathematics Question on Conic sections

Let e1e_1 be the eccentricity of the hyperbola x216y29=1\frac{x^2}{16} - \frac{y^2}{9} = 1 and e2e_2 be the eccentricity of the ellipse x2a2+y2b2=1,a>b,\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, \quad a > b, which passes through the foci of the hyperbola. If e1e2=1e_1 e_2 = 1, then the length of the chord of the ellipse parallel to the x-axis and passing through (0, 2) is:

A

454\sqrt{5}

B

853\frac{8\sqrt{5}}{3}

C

1053\frac{10\sqrt{5}}{3}

D

353\sqrt{5}

Answer

1053\frac{10\sqrt{5}}{3}

Explanation

Solution

Given:
x216+y29=1    e1=1916=54.\frac{x^2}{16} + \frac{y^2}{9} = 1 \implies e_1 = \sqrt{1 - \frac{9}{16}} = \frac{5}{4}.

For the ellipse:
e1e2=1    e2=45.e_1 e_2 = 1 \implies e_2 = \frac{4}{5}.

The ellipse passes through (±5,0)(\pm 5, 0), so a=5a = 5 and b=3b = 3:
x225+y29=1.\frac{x^2}{25} + \frac{y^2}{9} = 1.

The length of the chord parallel to the xx-axis and passing through (0,2)(0, 2) is given by:
L=2a1y2b2=2×5×149=1059=1053.L = 2a \sqrt{1 - \frac{y^2}{b^2}} = 2 \times 5 \times \sqrt{1 - \frac{4}{9}} = 10 \sqrt{\frac{5}{9}} = \frac{10 \sqrt{5}}{3}.

The Correct answer is: 1053\frac{10\sqrt{5}}{3}