Question
Mathematics Question on Conditional Probability
Let E1 and E2 be two events such that the conditional probabilities P(E1∣E2)=21, P(E2∣E1)=43 and P(E1∩E2)=81⋅ Then:
P(E1∩E2)=P(E1)⋅P(E2)
P(E1′∩E2′)=P(E1′)⋅P(E2′)
P(E1∩E2′)=P(E1)⋅P(E2)
P(E1′∩E2)=P(E1)⋅P(E2)
P(E1∩E2′)=P(E1)⋅P(E2)
Solution
P(E2E1)=21
⇒P(E2)P(E1∩E2)=21
P(E1E2)=43
⇒P(E1)P(E2∩E1)=43
P(E1∩E2)=81
P(E2)=41, P(E1)=61
(A) P(E1∩E2)=81 and P(E1)⋅P(E2)=241
⇒P(E1∩E2)=P(E1).P(E2)
(B) P(E1′∩E2′)=1−P(E1∪E2)
=1−[41+61−81]=2417
P(E1′)=43⇒P(E1′)P(E2)=243
⇒P(E1′∩E2′)=P(E1′)⋅P(E−2)
(C) P(E1∩E2′)=P(E1)−P(E1∩E2)
=61−81=241
P(E1)⋅P(E2)=241
⇒P(E1∩E2′)=P(E1)⋅P(E2)
(D) P(E1′∩E2)=P(E2)−P(E1∩E2)
=41−81=81
P(E1)P(E2)=241
⇒P(E1′∩E2)=P(E1).P(E2)
So, the correct option is (C): P(E1∩E2′)=P(E1)⋅P(E2)