Solveeit Logo

Question

Question: Let d<sub>1</sub>, d<sub>2</sub>, ….., d<sub>k</sub> be all the factors of a positive integer n incl...

Let d1, d2, ….., dk be all the factors of a positive integer n including 1 and n. Suppose d1 + d2 + …….+ dk = 72. Then the value of 1d1\frac{1}{d_{1}}+1d2\frac{1}{d_{2}}+……. +1dk\frac{1}{d_{k}} is

A

k272\frac{k^{2}}{72}

B

72k\frac{72}{k}

C

72n\frac{72}{n}

D

Cannot be computed from the given Information

Answer

72n\frac{72}{n}

Explanation

Solution

Sol. Explanation:

1d1\frac{1}{d_{1}}+1d2\frac{1}{d_{2}}+1d3\frac{1}{d_{3}}+……+1dk\frac{1}{d_{k}}= [nd1+nd2+nd3+...+ndk]\left\lbrack \frac{n}{d_{1}} + \frac{n}{d_{2}} + \frac{n}{d_{3}} + ... + \frac{n}{d_{k}} \right\rbrack

Now, nd1\frac{n}{d_{1}},nd2\frac{n}{d_{2}},…… will also be divisor of the number i.e., ndj\frac{n}{d_{j}}= dl for same j and l

Ž1d1\frac{1}{d_{1}}+ 1d2\frac{1}{d_{2}} +……..+1dk\frac{1}{d_{k}}= 1n\frac{1}{n} [d1 + d2 +…….] =72n\frac{72}{n}