Solveeit Logo

Question

Question: Let \(\displaystyle \lim_{x \to 1}\dfrac{{{x}^{4}}-1}{x-1}=\displaystyle \lim_{x \to k}\dfrac{{{x}^{...

Let limx1x41x1=limxkx3k3x2k2,\displaystyle \lim_{x \to 1}\dfrac{{{x}^{4}}-1}{x-1}=\displaystyle \lim_{x \to k}\dfrac{{{x}^{3}}-{{k}^{3}}}{{{x}^{2}}-{{k}^{2}}}, then value of k
( a ) 23\dfrac{2}{3}
( b ) 32\dfrac{3}{2}
( c ) 43\dfrac{4}{3}
( d ) 83\dfrac{8}{3}

Explanation

Solution

To solve this question, what we will do is we will first evaluate the limit of limx1x41x1\displaystyle \lim_{x \to 1}\dfrac{{{x}^{4}}-1}{x-1} using L’ hospital rule and then we will evaluate limit of limxkx3k3x2k2,\displaystyle \lim_{x \to k}\dfrac{{{x}^{3}}-{{k}^{3}}}{{{x}^{2}}-{{k}^{2}}}, then we will use relation limx1x41x1=limxkx3k3x2k2,\displaystyle \lim_{x \to 1}\dfrac{{{x}^{4}}-1}{x-1}=\displaystyle \lim_{x \to k}\dfrac{{{x}^{3}}-{{k}^{3}}}{{{x}^{2}}-{{k}^{2}}}, to evaluate value of k.

Complete step-by-step answer:
In question, it is given that limx1x41x1=limxkx3k3x2k2,\displaystyle \lim_{x \to 1}\dfrac{{{x}^{4}}-1}{x-1}=\displaystyle \lim_{x \to k}\dfrac{{{x}^{3}}-{{k}^{3}}}{{{x}^{2}}-{{k}^{2}}},
Let, first find the limit of x41x1\dfrac{{{x}^{4}}-1}{x-1} when x tends to 1,
So, when x1x \to 1 , x41x1\dfrac{{{x}^{4}}-1}{x-1} gives us 00\dfrac{0}{0} form, which is an indeterminate form.
So to simplify this we will use L’ hopital rule which says that if limx1f(x)g(x)\displaystyle \lim_{x \to 1}\dfrac{f(x)}{g(x)} gives indeterminate form of 00\dfrac{0}{0} or \dfrac{\infty }{\infty }, then we differentiate the functions f ( x ) and g ( x ) with respect to x unless and until we do not get indeterminate form and finally get a finite limit.
So, using L’ hospital rule in limx1x41x1\displaystyle \lim_{x \to 1}\dfrac{{{x}^{4}}-1}{x-1}, we get
limx14x31\displaystyle \lim_{x \to 1}\dfrac{4{{x}^{3}}}{1}, as ddx(x41)=4x3\dfrac{d}{dx}({{x}^{4}}-1)=4{{x}^{3}} and ddx(x1)=1\dfrac{d}{dx}(x-1)=1using property of differentiation ddx(xn)=nxn1\dfrac{d}{dx}({{x}^{n}})=n{{x}^{n-1}} and ddx(k)=0\dfrac{d}{dx}(k)=0, where k is any constant.
So, limx14x3\displaystyle \lim_{x \to 1}4{{x}^{3}}
Putting x = 1, we get
4(1)3=44{{(1)}^{3}}=4……( i )
now, we will evaluate the limit of x3k3x2k2,\dfrac{{{x}^{3}}-{{k}^{3}}}{{{x}^{2}}-{{k}^{2}}}, when x tends to k,
So, limxkx3k3x2k2,\displaystyle \lim_{x \to k}\dfrac{{{x}^{3}}-{{k}^{3}}}{{{x}^{2}}-{{k}^{2}}}, it gives us 00\dfrac{0}{0} form, which is an indeterminate form.
So, using L’ hospital rule in limxkx3k3x2k2,\displaystyle \lim_{x \to k}\dfrac{{{x}^{3}}-{{k}^{3}}}{{{x}^{2}}-{{k}^{2}}},, we get
limx13x22x\displaystyle \lim_{x \to 1}\dfrac{3{{x}^{2}}}{2x}, as ddx(x3k3)=3x2\dfrac{d}{dx}({{x}^{3}}-{{k}^{3}})=3{{x}^{2}} and ddx(x2k2)=2x\dfrac{d}{dx}({{x}^{2}}-{{k}^{2}})=2x
On simplifying, we get
limx13x2\displaystyle \lim_{x \to 1}\dfrac{3x}{2}
Putting x = k, we get
3(k)2=3k2\dfrac{3(k)}{2}=\dfrac{3k}{2}……( ii )
As in question, it is given that limx1x41x1=limxkx3k3x2k2,\displaystyle \lim_{x \to 1}\dfrac{{{x}^{4}}-1}{x-1}=\displaystyle \lim_{x \to k}\dfrac{{{x}^{3}}-{{k}^{3}}}{{{x}^{2}}-{{k}^{2}}},
So from ( i ) and ( ii ), we get
4=3k24=\dfrac{3k}{2}
Using, cross multiplication, we get
k=83k=\dfrac{8}{3}

So, the correct answer is “Option d”.

Note: Questions related algebraic limits, one must know all the rules and short tricks based on evaluation of algebraic limits. Also, while solving indeterminate limits such as 00\dfrac{0}{0} or \dfrac{\infty }{\infty }, L’ hospital rule plays an important role, so on must know the evaluation of limit using L’ hospital rule.