Solveeit Logo

Question

Mathematics Question on Number Systems

Let digit number denote the (r + 2) digit number where the first and the last digits are 7 and the remaining r digits are 5. Consider the sum S = 77 + 757 + 7557 + …+digit number . If S =digit number , where m and n are natural numbers less than 3000, then the value of m + n is ______.

Answer

S=77+757+7557++S =77+757+7557+⋯+ digit number
=7(10+102++1099)+50(1+11++7(10+10^2+…+10^{99})+50(1+11+…+ digit number+7×99+7×99

=70(109919)+509[(101)+(1021)++(10981)]+7×9970(\frac{10^{99} - 1}{9}) + \frac{50}{9}\left[(10 - 1) + (10^2 - 1) + \ldots + (10^{98} - 1)\right] + 7 \times 99

=70(109919)+509[10(109819)98]+7×9970\left(\frac{10^{99} - 1}{9}\right) + \frac{50}{9}\left[10\left(\frac{10^{98} - 1}{9}\right) - 98\right] + 7 \times 99

=7×101009709+509[109919998]+7×99\frac{7 \times 10^{100}}{9} - \frac{70}{9} + \frac{50}{9} \left[ \frac{10^{99} - 1 - 9}{9} - 98 \right] + 7 \times 99

=7×101009709+509\frac{7 \times 10^{100}}{9} - \frac{70}{9} + \frac{50}{9} digit number+7×99+7×99

 digit number
So, m+n=1219