Solveeit Logo

Question

Question: Let \(\dfrac{{ - \pi }}{6} < \theta < \dfrac{{ - \pi }}{{12}}\), suppose \({\alpha _1}\) and \({\bet...

Let π6<θ<π12\dfrac{{ - \pi }}{6} < \theta < \dfrac{{ - \pi }}{{12}}, suppose α1{\alpha _1} and β1{\beta _1} are the equation x22xsecθ+1=0{x^2} - 2x\sec \theta + 1 = 0 and α2{\alpha _2} and β2{\beta _2} are the roots of the equation x2+2xtanθ1=0{x^2} + 2x\tan \theta - 1 = 0. If α1>β1{\alpha _1} > {\beta _1} and α2>β2{\alpha _2} > {\beta _2}, then find the value of α1+β2{\alpha _1} + {\beta _2}.
(A) 2(secθtanθ)2\left( {\sec \theta - \tan \theta } \right)
(B) 2secθ2\sec \theta
(C) 2tanθ- 2\tan \theta
(D) 00

Explanation

Solution

Analyse the problem properly before starting a solution. Start with finding the roots of quadratic equations using the Quadratic formula. Now use the interval of angle π6<θ<π12\dfrac{{ - \pi }}{6} < \theta < \dfrac{{ - \pi }}{{12}} to find the value of α,β\alpha ,\beta according to the relation α1>β1{\alpha _1} > {\beta _1} and α2>β2{\alpha _2} > {\beta _2}. After finding roots separately, just evaluate α1+β2{\alpha _1} + {\beta _2}.

Complete step-by-step answer:
Firstly, we should analyse the given information in the question. It is given that angle θ\theta lies in an interval (30,15)\left( { - 30^\circ , - 15^\circ } \right). And we are given with two quadratic equations x22xsecθ+1=0{x^2} - 2x\sec \theta + 1 = 0 and x2+2xtanθ1=0{x^2} + 2x\tan \theta - 1 = 0 with the respective roots as α1{\alpha _1}, β1{\beta _1} and α2{\alpha _2}, β2{\beta _2}. Also, we know that α>β\alpha > \beta for both the pairs.
We can start by finding the roots of the equation x22xsecθ+1=0{x^2} - 2x\sec \theta + 1 = 0 first. This can be done by using Quadratic formula, that can define for an equation of the form ax2+bx+c=0a{x^2} + bx + c = 0 as:
x=b±b24ac2a\Rightarrow x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}
Using the Quadratic formula, we can write the roots of the equation x22xsecθ+1=0{x^2} - 2x\sec \theta + 1 = 0 as:
x=(2secθ)±(2secθ)24×1×12×1\Rightarrow x = \dfrac{{ - \left( { - 2\sec \theta } \right) \pm \sqrt {{{\left( { - 2\sec \theta } \right)}^2} - 4 \times 1 \times 1} }}{{2 \times 1}}
This can be further simplified as:
x=2secθ±4sec2θ42=2secθ±2sec2θ12\Rightarrow x = \dfrac{{2\sec \theta \pm \sqrt {4{{\sec }^2}\theta - 4} }}{2} = \dfrac{{2\sec \theta \pm 2\sqrt {{{\sec }^2}\theta - 1} }}{2}
We can now divide the numerator by 22, so we get:
x=secθ±sec2θ1\Rightarrow x = \sec \theta \pm \sqrt {{{\sec }^2}\theta - 1}
Also, we know that: 1+tan2θ=sec2θtan2θ=sec2θ+11 + {\tan ^2}\theta = {\sec ^2}\theta \Rightarrow {\tan ^2}\theta = {\sec ^2}\theta + 1 . Substituting that:
x=secθ±tan2θ=secθ±tanθ\Rightarrow x = \sec \theta \pm \sqrt {{{\tan }^2}\theta } = \sec \theta \pm \tan \theta (1)
Now, let’s consider the equation x2+2xtanθ1=0{x^2} + 2x\tan \theta - 1 = 0 and apply the Quadratic equation in this:
x=2tanθ±(2tanθ)24×1×(1)2×1\Rightarrow x = \dfrac{{ - 2\tan \theta \pm \sqrt {{{\left( {2\tan \theta } \right)}^2} - 4 \times 1 \times \left( { - 1} \right)} }}{{2 \times 1}}
Now, let’s take 44 out of the radical sign and rewrite it as:
x=2tanθ±4tan2θ+42=2tanθ±2tan2θ+12=tanθ±tan2θ+1\Rightarrow x = \dfrac{{ - 2\tan \theta \pm \sqrt {4{{\tan }^2}\theta + 4} }}{2} = \dfrac{{ - 2\tan \theta \pm 2\sqrt {{{\tan }^2}\theta + 1} }}{2} = - \tan \theta \pm \sqrt {{{\tan }^2}\theta + 1}
Again by using: 1+tan2θ=sec2θtan2θ=sec2θ+11 + {\tan ^2}\theta = {\sec ^2}\theta \Rightarrow {\tan ^2}\theta = {\sec ^2}\theta + 1, we get:
x=tanθ±tan2θ+1=tanθ±secθ\Rightarrow x = - \tan \theta \pm \sqrt {{{\tan }^2}\theta + 1} = - \tan \theta \pm \sec \theta (2)
Now, we already know that angle θ\theta lies in (30,15)\left( { - 30^\circ , - 15^\circ } \right), therefore both secθ\sec \theta and tanθ\tan \theta are negative in this interval. Since θ\theta lies in fourth quadrant and Secant and tangent functions have negative values for fourth quadrant angles.
secθ<0,tanθ<0\Rightarrow \sec \theta < 0,\tan \theta < 0 for all θ\theta in the interval (30,15)\left( { - 30^\circ , - 15^\circ } \right)
So, from relation (1) and (2), we can conclude from α1>β1{\alpha _1} > {\beta _1} and α2>β2{\alpha _2} > {\beta _2} that:
α1=secθtanθ{\alpha _1} = \sec \theta - \tan \theta
β1=secθ+tanθ{\beta _1} = \sec \theta + \tan \theta
α2=secθtanθ{\alpha _2} = \sec \theta - \tan \theta
β2=secθtanθ{\beta _2} = - \sec \theta - \tan \theta
Therefore, the required value: α1+β2=secθtanθsecθtanθ=2tanθ{\alpha _1} + {\beta _2} = \sec \theta - \tan \theta - sec\theta - \tan \theta = - 2\tan \theta

Hence, the option (C) is the correct option.

Note: Solve the quadratic formula carefully. The given angle interval π6<θ<π12\dfrac{{ - \pi }}{6} < \theta < \dfrac{{ - \pi }}{{12}} can be written as (30,15)\left( { - 30^\circ , - 15^\circ } \right) because π\pi radians of angle is equal to 180180^\circ angle. So π6=30\dfrac{{ - \pi }}{6} = 30^\circ can be a different way of writing the angles. While figuring out the value of α1,β1{\alpha _1},{\beta _1} using the solution of the respective equation carefully. The sign of secant and tangent function will determine the larger root.