Solveeit Logo

Question

Question: Let \(\dfrac{\left( 1-ix \right)}{\left( 1+ix \right)}=\left( a-ib \right)\) and \({{a}^{2}}+{{b}^{2...

Let (1ix)(1+ix)=(aib)\dfrac{\left( 1-ix \right)}{\left( 1+ix \right)}=\left( a-ib \right) and a2+b2=1{{a}^{2}}+{{b}^{2}}=1 where aa and bb are real, then xx equal to.

Explanation

Solution

In this question we have been given with the expression for which we have to find the value of xx given that a2+b2=1{{a}^{2}}+{{b}^{2}}=1. We will solve this question by first rationalizing the denominator by multiplying both the numerator and denominator by (1ix)\left( 1-ix \right) and get the term in the form of aiba-ib. We will then find (1+a)2+b2{{\left( 1+a \right)}^{2}}+{{b}^{2}} and then rearrange the expression to get the value of xx to get the required solution.

Complete step-by-step solution:
We have the expression given to us as:
(1ix)(1+ix)=(aib)\Rightarrow \dfrac{\left( 1-ix \right)}{\left( 1+ix \right)}=\left( a-ib \right)
On rationalizing the denominator by multiplying by (1ix)\left( 1-ix \right), we get:
(1ix)(1ix)(1+ix)(1ix)=(aib)\Rightarrow \dfrac{\left( 1-ix \right)\left( 1-ix \right)}{\left( 1+ix \right)\left( 1-ix \right)}=\left( a-ib \right)
On multiplying the terms, we get:
(1ix)212(ix)2=(aib)\Rightarrow \dfrac{{{\left( 1-ix \right)}^{2}}}{{{1}^{2}}-{{\left( ix \right)}^{2}}}=\left( a-ib \right)
On simplifying, we get:
(1ix)21i2x2=(aib)\Rightarrow \dfrac{{{\left( 1-ix \right)}^{2}}}{1-{{i}^{2}}{{x}^{2}}}=\left( a-ib \right)
Now we know that i2=1{{i}^{2}}=-1, we get:
(1ix)21+x2=(aib)\Rightarrow \dfrac{{{\left( 1-ix \right)}^{2}}}{1+{{x}^{2}}}=\left( a-ib \right)
On using the expansion formula (ab)2=a22ab+b2{{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}
12ix+i2x21+x2=(aib)\Rightarrow \dfrac{1-2ix+{{i}^{2}}{{x}^{2}}}{1+{{x}^{2}}}=\left( a-ib \right)
Now we know that i2=1{{i}^{2}}=-1, we get:
12ixx21+x2=(aib)\Rightarrow \dfrac{1-2ix-{{x}^{2}}}{1+{{x}^{2}}}=\left( a-ib \right)
On splitting the terms with the real part on one side and the complex part on another side, we get:
1x21+x2i2x1+x2=(aib)\Rightarrow \dfrac{1-{{x}^{2}}}{1+{{x}^{2}}}-i\dfrac{2x}{1+{{x}^{2}}}=\left( a-ib \right)
On comparing, we get a=1x21+x2a=\dfrac{1-{{x}^{2}}}{1+{{x}^{2}}} and b=2x1+x2b=\dfrac{2x}{1+{{x}^{2}}}
Now on doing 1+a1+a, we get:
1+a=1+1x21+x2\Rightarrow 1+a=1+\dfrac{1-{{x}^{2}}}{1+{{x}^{2}}}
On taking the lowest common multiple, we get:
1+a=1+x2+1x21+x2\Rightarrow 1+a=\dfrac{1+{{x}^{2}}+1-{{x}^{2}}}{1+{{x}^{2}}}
On simplifying, we get:
1+a=21+x2\Rightarrow 1+a=\dfrac{2}{1+{{x}^{2}}}
On squaring both the sides, we get:
(1+a)2=(21+x2)2\Rightarrow {{\left( 1+a \right)}^{2}}={{\left( \dfrac{2}{1+{{x}^{2}}} \right)}^{2}}
On simplifying, we get:
(1+a)2=4(1+x2)2(1)\Rightarrow {{\left( 1+a \right)}^{2}}=\dfrac{4}{{{\left( 1+{{x}^{2}} \right)}^{2}}}\to \left( 1 \right)
Now we have b=2x1+x2b=\dfrac{2x}{1+{{x}^{2}}} and b2=4x2(1+x2)2(2){{b}^{2}}=\dfrac{4{{x}^{2}}}{{{\left( 1+{{x}^{2}} \right)}^{2}}}\to \left( 2 \right)
Now on adding equation (1)\left( 1 \right) and (2)\left( 2 \right), we get:
(1+a)2+b2=4(1+x2)2+4x2(1+x2)2\Rightarrow {{\left( 1+a \right)}^{2}}+{{b}^{2}}=\dfrac{4}{{{\left( 1+{{x}^{2}} \right)}^{2}}}+\dfrac{4{{x}^{2}}}{{{\left( 1+{{x}^{2}} \right)}^{2}}}
Since the denominator is same, we get:
(1+a)2+b2=4+4x2(1+x2)2\Rightarrow {{\left( 1+a \right)}^{2}}+{{b}^{2}}=\dfrac{4+4{{x}^{2}}}{{{\left( 1+{{x}^{2}} \right)}^{2}}}
On taking 44 common, we get:
(1+a)2+b2=4(1+x2)(1+x2)2\Rightarrow {{\left( 1+a \right)}^{2}}+{{b}^{2}}=\dfrac{4\left( 1+{{x}^{2}} \right)}{{{\left( 1+{{x}^{2}} \right)}^{2}}}
On simplifying, we get:
(1+a)2+b2=41+x2\Rightarrow {{\left( 1+a \right)}^{2}}+{{b}^{2}}=\dfrac{4}{1+{{x}^{2}}}
Now we have 2b=4x1+x22b=\dfrac{4x}{1+{{x}^{2}}}
Therefore, we can write it as:
(1+a)2+b2=2bx\Rightarrow {{\left( 1+a \right)}^{2}}+{{b}^{2}}=\dfrac{2b}{x}
On rearranging, we get:
x=2b(1+a)2+b2\Rightarrow x=\dfrac{2b}{{{\left( 1+a \right)}^{2}}+{{b}^{2}}}, which is the required solution.

Note: In these types of questions, it is to be remembered that complex numbers should be represented in the form of aiba-ib and the real part and the imaginary part should be split. The value of ii should be remembered which is that ii is the square root of negative 11 therefore, it can be written as i=1i=\sqrt{-1}, therefore we can use the property i2=1{{i}^{2}}=-1.