Solveeit Logo

Question

Mathematics Question on integral

Let [.] denote the greatest integer function then the value of 01.5x[x2]\int\limits^{1.5}_{0}x \left[x^{2}\right] dx is : .

A

0

B

32\frac{3}{2}

C

34\frac{3}{4}

D

54\frac{5}{4}

Answer

34\frac{3}{4}

Explanation

Solution

01x[x2]dx+12x[x2]dx+21.5x[x2]dx\int\limits^{1}_{0} x\left[x^{2}\right]dx+\int\limits^{\sqrt{2}}_{1}x\left[x^{2}\right]dx+\int\limits^{1.5}_{\sqrt{2}}x\left[x^{2}\right]dx 01x.0dx+12xdx+21.52xdx\int\limits^{1}_{0}x.0dx +\int\limits^{\sqrt{2}}_{1}xdx +\int\limits^{1.5}_{\sqrt{2}}2x \,dx 0+[x22]12+[x2]21.50+\left[\frac{x^{2}}{2}\right]^{\sqrt{2}}_{1}+\left[x^{2}\right]^{1.5}_{\sqrt{2}} 12(21)+(2.252)\frac{1}{2}\left(2-1\right)+\left(2.25-2\right) 12+.25\frac{1}{2}+.25 12+14=34\frac{1}{2}+\frac{1}{4} = \frac{3}{4}