Solveeit Logo

Question

Quantitative Aptitude Question on Triangles, Circles & Quadrilaterals

Let ΔABCΔABC be an isosceles triangle such that ABAB and ACAC are of equal length. ADAD is the altitude from AA on BCBC and BEBE is the altitude from BB on ACAC . If ADAD and BEBE intersect at OO such that AOB=105∠AOB =105\degree , then ADBE\frac{AD}{BE} equals

A

sin15º

B

cos15º

C

2cos15º

D

2sin15º

Answer

2cos15º

Explanation

Solution

Let ΔABC be an isosceles triangle such that AB and AC are of equal length

Given, AB=ACAB = AC
C=B⇒ ∠C = ∠B …….. (1)
ADAD and BEBE are altitudes they make 90° with the sides.
AOB=EOD=105°∠AOB = EOD = 105° (Vertically Opposite Angles)
In quadrilateral DOECDOEC
C=360°105°90°90°∠C = 360°-105°-90°-90°
C=75°∠C= 75°
From eq (1),
B=75°⇒ ∠B = 75°
Area of the triangle
AD.BC=BE.ACAD.BC = BE .AC
ADBE=ACBC\frac {AD}{BE}=\frac {AC}{BC}

ADBE=2Rsin B2Rsin A\frac {AD}{BE} =\frac {2R sin \ B}{2R sin \ A}

ADBE=sin75°sin30°\frac {AD}{BE}=\frac {sin 75°}{sin 30°}

ADBE=2sin 75°\frac {AD}{BE}=2sin\ 75°

ADBE=2cos 15°\frac {AD}{BE}=2cos\ 15°

So, the correct option is (C): 2cos 15°2cos\ 15°