Question
Quantitative Aptitude Question on Triangles, Circles & Quadrilaterals
Let ΔABC be an isosceles triangle such that AB and AC are of equal length. AD is the altitude from A on BC and BE is the altitude from B on AC . If AD and BE intersect at O such that ∠AOB=105∘ , then BEAD equals
A
sin15º
B
cos15º
C
2cos15º
D
2sin15º
Answer
2cos15º
Explanation
Solution
Given, AB=AC
⇒∠C=∠B …….. (1)
AD and BE are altitudes ⇒ they make 90° with the sides.
∠AOB=EOD=105° (Vertically Opposite Angles)
In quadrilateral DOEC
∠C=360°−105°−90°−90°
∠C=75°
From eq (1),
⇒∠B=75°
Area of the triangle
AD.BC=BE.AC
BEAD=BCAC
BEAD=2Rsin A2Rsin B
BEAD=sin30°sin75°
BEAD=2sin 75°
BEAD=2cos 15°
So, the correct option is (C): 2cos 15°