Solveeit Logo

Question

Question: Let \(d\in R\), and \(A=\left[ \begin{matrix} -2 & 4+d & \sin \theta -2 \\\ 1 & \sin \thet...

Let dRd\in R, and A=[24+dsinθ2 1sinθ+2d 52sinθd(sinθ)+2+2d ]A=\left[ \begin{matrix} -2 & 4+d & \sin \theta -2 \\\ 1 & \sin \theta +2 & d \\\ 5 & 2\sin \theta -d & \left( -\sin \theta \right)+2+2d \\\ \end{matrix} \right], θ[0,2π]\theta \in \left[ 0,2\pi \right]. If the minimum value of det(A) is 8, then a value of d is?
(a) -7
(b) 2(2+2)2\left( \sqrt{2}+2 \right)
(c) -5
(d) 2(2+1)2\left( \sqrt{2}+1 \right)

Explanation

Solution

First, by using the row transformation as R1R1+R32R2{{R}_{1}}\to {{R}_{1}}+{{R}_{3}}-2{{R}_{2}} to the determinant of the matrix A, we get the simple form. Then, by expanding the determinant along the first row, we get a solution of the determinant. Then, we can clearly see that determinant gives minimum value when θ=3π2\theta =\dfrac{3\pi }{2} as θ[0,2π]\theta \in \left[ 0,2\pi \right],then by substituting, we get the value of d.

Complete step-by-step answer:
In this question, we are supposed to find the value of d from the given condition that det(A) is 8 which is minimum for the given matrix A as:
A=[24+dsinθ2 1sinθ+2d 52sinθd(sinθ)+2+2d ]A=\left[ \begin{matrix} -2 & 4+d & \sin \theta -2 \\\ 1 & \sin \theta +2 & d \\\ 5 & 2\sin \theta -d & \left( -\sin \theta \right)+2+2d \\\ \end{matrix} \right]
So, before proceeding for this, we must write the matrix A in determinant form as:
detA=24+dsinθ2 1sinθ+2d 52sinθd(sinθ)+2+2d \det A=\left| \begin{matrix} -2 & 4+d & \sin \theta -2 \\\ 1 & \sin \theta +2 & d \\\ 5 & 2\sin \theta -d & \left( -\sin \theta \right)+2+2d \\\ \end{matrix} \right|
Now, by using the row transformation as R1R1+R32R2{{R}_{1}}\to {{R}_{1}}+{{R}_{3}}-2{{R}_{2}} to the determinant of the matrix A as:
detA=2+524+d+2sinθd2sinθ4sinθ2sinθ+2+2d2d 1sinθ+2d 52sinθd(sinθ)+2+2d \det A=\left| \begin{matrix} -2+5-2 & 4+d+2\sin \theta -d-2\sin \theta -4 & \sin \theta -2-\sin \theta +2+2d-2d \\\ 1 & \sin \theta +2 & d \\\ 5 & 2\sin \theta -d & \left( -\sin \theta \right)+2+2d \\\ \end{matrix} \right|
Then, after solving row first, we get:
detA=100 1sinθ+2d 52sinθd(sinθ)+2+2d \det A=\left| \begin{matrix} 1 & 0 & 0 \\\ 1 & \sin \theta +2 & d \\\ 5 & 2\sin \theta -d & \left( -\sin \theta \right)+2+2d \\\ \end{matrix} \right|
Then, by expanding the determinant along first row, we get:
1[(sinθ+2)(2+2dsinθ)d(2sinθd)]1\left[ \left( \sin \theta +2 \right)\left( 2+2d-\sin \theta \right)-d\left( 2\sin \theta -d \right) \right]
Then, by solving the above expression, we get:
4+4d2sinθ+2sinθ+2dsinθsin2θ2dsinθ+d2 d2+4d+4sin2θ \begin{aligned} & 4+4d-2\sin \theta +2\sin \theta +2d\sin \theta -{{\sin }^{2}}\theta -2d\sin \theta +{{d}^{2}} \\\ & \Rightarrow {{d}^{2}}+4d+4-{{\sin }^{2}}\theta \\\ \end{aligned}
Now, we are given the condition in the question that we get the minimum value of the determinant of A when the determinant is minimum.
So, we can clearly see that determinant gives minimum value when θ=3π2\theta =\dfrac{3\pi }{2} as θ[0,2π]\theta \in \left[ 0,2\pi \right], which in turn gives the value as:
sin2(3π2)=(1)2 1 \begin{aligned} & {{\sin }^{2}}\left( \dfrac{3\pi }{2} \right)={{\left( -1 \right)}^{2}} \\\ & \Rightarrow 1 \\\ \end{aligned}
Now, by equating the value of determinant to 8 and also substituting the value of sin2θ{{\sin }^{2}}\theta for minimum condition, we get:
d2+4d+41=8 (d+2)2=9 (d+2)=±3 \begin{aligned} & {{d}^{2}}+4d+4-1=8 \\\ & \Rightarrow {{\left( d+2 \right)}^{2}}=9 \\\ & \Rightarrow \left( d+2 \right)=\pm 3 \\\ \end{aligned}
Then, by using the above condition, we can get two values of d as:
d=32 d=1 \begin{aligned} & d=3-2 \\\ & \Rightarrow d=1 \\\ \end{aligned} or d=32 d=5 \begin{aligned} & d=-3-2 \\\ & \Rightarrow d=-5 \\\ \end{aligned}
So, we get the values of d as 1 or -5.

So, the correct answer is “Option c”.

Note: Now, to solve these types of questions we need to know some of the basic formulas for the perfect square and condition of determinants. So, there is no compulsion that we expand along the first row, we can expand along any row or column to get the same result. Moreover, the formula used for perfect square is (a+b)2=a2+2ab+b2{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}.