Solveeit Logo

Question

Question: Let $D$ be domain of $f(x) = \log_{\left[\frac{x+1}{2}\right]}{(x^2-5x+6)}$ where, $[.]$ denotes GIF...

Let DD be domain of f(x)=log[x+12](x25x+6)f(x) = \log_{\left[\frac{x+1}{2}\right]}{(x^2-5x+6)} where, [.][.] denotes GIF, then which of the intervals are NOT contained in DD:

A

(12,1]\left(\frac{1}{2},1\right]

B

[32,2]\left[\frac{3}{2},2\right]

C

(2,3)(2,3)

D

[52,72]\left[\frac{5}{2},\frac{7}{2}\right]

Answer

All the given intervals are NOT contained in DD.

Explanation

Solution

The domain of f(x)=log[x+12](x25x+6)f(x) = \log_{\left[\frac{x+1}{2}\right]}{(x^2-5x+6)} requires the argument x25x+6>0x^2-5x+6 > 0, which gives x(,2)(3,)x \in (-\infty, 2) \cup (3, \infty). The base [x+12]\left[\frac{x+1}{2}\right] must be positive and not equal to 1. [x+12]>0    x+121    x1\left[\frac{x+1}{2}\right] > 0 \implies \frac{x+1}{2} \ge 1 \implies x \ge 1. [x+12]1    x+12<1\left[\frac{x+1}{2}\right] \neq 1 \implies \frac{x+1}{2} < 1 or x+122    x<1\frac{x+1}{2} \ge 2 \implies x < 1 or x3x \ge 3. Combining the base conditions gives x[3,)x \in [3, \infty). The domain DD is the intersection of the argument and base conditions: ((,2)(3,))[3,)=(3,)((-\infty, 2) \cup (3, \infty)) \cap [3, \infty) = (3, \infty). We check if each given interval is a subset of (3,)(3, \infty).

  • (12,1]=(0.5,1](\frac{1}{2},1] = (0.5, 1] is not a subset of (3,)(3, \infty).
  • [32,2]=[1.5,2][\frac{3}{2},2] = [1.5, 2] is not a subset of (3,)(3, \infty).
  • (2,3)(2,3) is not a subset of (3,)(3, \infty).
  • [52,72]=[2.5,3.5][\frac{5}{2},\frac{7}{2}] = [2.5, 3.5] is not a subset of (3,)(3, \infty).

All the given intervals are NOT contained in the domain DD.