Solveeit Logo

Question

Mathematics Question on Straight lines

Let d1d_1 and d2d_2 be the lengths of the perpendiculars drawn from any point of the line 7x9y+10=07x - 9y + 10 = 0 upon the lines 3x+4y=53x + 4y = 5 and 12x+5y=712x + 5y = 7 respectively. Then

A

d1>d2d_1 > d_2

B

d1=d2d_1 = d_2

C

d1<d2d_1 < d_2

D

d1=2d2d_1 = 2d_2

Answer

d1=d2d_1 = d_2

Explanation

Solution

Let (h,k)(h, k) be any point on the line 7x9y+10=07 x-9 y+10=0,
then 7h9k+10=07 h-9 k+10=0
7h=9k10\Rightarrow 7 h =9 k-10
h=9k107\Rightarrow h =\frac{9 k-10}{7} ... (i)
Now, perpendicular distance from point (h,k)(h, k)
to the line 3x+4y=53 x+4 y=5 is d1d_{1}
d1=3h+4k532+42d_{1}=\frac{3 h+4 k-5}{\sqrt{3^{2}+4^{2}}}
d1=3h+4k55\Rightarrow d_{1}=\frac{3 h+4 k-5}{5}
d1=3h+4k55\Rightarrow d_{1}=\frac{3 h+4 k-5}{5} ... (ii)
and perpendicular distance from (h,k)(h, k) to the line 12x+5y=712 x+5 y=7 is d2d_{2}
d2=12h+5k7122+52\therefore d_{2}=\frac{12 h+5 k-7}{\sqrt{12^{2}+5^{2}}}
d2=12h+5k713\Rightarrow d_{2}=\frac{12 h+5 k-7}{13} ... (iii)
Now, d1d2=3h+4k5512h+5k713d_{1}-d_{2}=\frac{3 h+4 k-5}{5}-\frac{12 h+5 k-7}{13}
d1d2\Rightarrow d_{1}-d_{2}
=13(3h+4k5)5(12h+5k7)65=\frac{13(3 h+4 k-5)-5(12 h+5 k-7)}{65}
=39h+52k6560h25k+3565=\frac{39 h+52 k-65-60 h-25 k+35}{65}
=21h+27k3065=\frac{-21 h+27 k-30}{65}
=21(9k107)+27k3065=\frac{-21\left(\frac{9 k-10}{7}\right)+27 k-30}{65}
=27k+30+27k3065=0=\frac{-27 k+30+27 k-30}{65}=0 [fromE(i)]

d1d2=0\Rightarrow d_{1}-d_{2}=0
d1=d2\Rightarrow d_{1}=d_{2}