Question
Mathematics Question on Straight lines
Let d1 and d2 be the lengths of the perpendiculars drawn from any point of the line 7x−9y+10=0 upon the lines 3x+4y=5 and 12x+5y=7 respectively. Then
A
d1>d2
B
d1=d2
C
d1<d2
D
d1=2d2
Answer
d1=d2
Explanation
Solution
Let (h,k) be any point on the line 7x−9y+10=0,
then 7h−9k+10=0
⇒7h=9k−10
⇒h=79k−10 ... (i)
Now, perpendicular distance from point (h,k)
to the line 3x+4y=5 is d1
d1=32+423h+4k−5
⇒d1=53h+4k−5
⇒d1=53h+4k−5 ... (ii)
and perpendicular distance from (h,k) to the line 12x+5y=7 is d2
∴d2=122+5212h+5k−7
⇒d2=1312h+5k−7 ... (iii)
Now, d1−d2=53h+4k−5−1312h+5k−7
⇒d1−d2
=6513(3h+4k−5)−5(12h+5k−7)
=6539h+52k−65−60h−25k+35
=65−21h+27k−30
=65−21(79k−10)+27k−30
=65−27k+30+27k−30=0 [fromE(i)]
⇒d1−d2=0
⇒d1=d2