Solveeit Logo

Question

Question: Let \(\cos \left( \alpha +\beta \right)=\dfrac{4}{5}\) and let \(\sin \left( \alpha -\beta \right)=\...

Let cos(α+β)=45\cos \left( \alpha +\beta \right)=\dfrac{4}{5} and let sin(αβ)=513\sin \left( \alpha -\beta \right)=\dfrac{5}{13} , where 0α,βπ40\le \alpha ,\beta \le \dfrac{\pi }{4} then tan(2α)=\tan \left( 2\alpha \right)=
a)5633 b)1912 c)207 d)2516 \begin{aligned} & a)\dfrac{56}{33} \\\ & b)\dfrac{19}{12} \\\ & c)\dfrac{20}{7} \\\ & d)\dfrac{25}{16} \\\ \end{aligned}

Explanation

Solution

Now we are given with cos(α+β)\cos \left( \alpha +\beta \right) and sin(αβ)\sin \left( \alpha -\beta \right).
Now we know that sec2x=1cos2x{{\sec }^{2}}x=\dfrac{1}{{{\cos }^{2}}x} , tan2x+1=sec2x{{\tan }^{2}}x+1={{\sec }^{2}}x and sin2x+cos2x=1{{\sin }^{2}}x+{{\cos }^{2}}x=1 . Using these identities we can find the value of tan(α+β)\tan \left( \alpha +\beta \right) and tan(αβ)\tan \left( \alpha -\beta \right) . Now we have tan(2α)=tan(α+β+(αβ))\tan \left( 2\alpha \right)=\tan \left( \alpha +\beta +\left( \alpha -\beta \right) \right) and tan(x+y)=tanx+tany1tanxtany\tan \left( x+y \right)=\dfrac{\tan x+\tan y}{1-\tan x\tan y} . hence we can get the value of tan2α\tan 2\alpha

Complete step by step answer:
Now first consider cos(α+β)=45\cos \left( \alpha +\beta \right)=\dfrac{4}{5}
Squaring the equation on both sides we get
cos2(α+β)=1625{{\cos }^{2}}\left( \alpha +\beta \right)=\dfrac{16}{25}
Taking inverse on both sides we get
1cos2(α+β)=2516\dfrac{1}{{{\cos }^{2}}\left( \alpha +\beta \right)}=\dfrac{25}{16}
Now we know that sec2x=1cos2x{{\sec }^{2}}x=\dfrac{1}{{{\cos }^{2}}x}
Hence we get
sec2(α+β)=2516{{\sec }^{2}}\left( \alpha +\beta \right)=\dfrac{25}{16}
Now we have identity tan2x+1=sec2x{{\tan }^{2}}x+1={{\sec }^{2}}x using this we get.
1+tan2(α+β)=2516 tan2(α+β)=25161 tan2(α+β)=251616=916 tan(α+β)=±34 \begin{aligned} & 1+{{\tan }^{2}}\left( \alpha +\beta \right)=\dfrac{25}{16} \\\ & \Rightarrow {{\tan }^{2}}\left( \alpha +\beta \right)=\dfrac{25}{16}-1 \\\ & \Rightarrow {{\tan }^{2}}\left( \alpha +\beta \right)=\dfrac{25-16}{16}=\dfrac{9}{16} \\\ & \Rightarrow \tan \left( \alpha +\beta \right)=\pm \dfrac{3}{4} \\\ \end{aligned}
Now since we have 0α,βπ40\le \alpha ,\beta \le \dfrac{\pi }{4} we can say 0α+βπ20\le \alpha +\beta \le \dfrac{\pi }{2} and tan is positive in first quadrant.
Hence we get tan(α+β)=34...............(1)\tan \left( \alpha +\beta \right)=\dfrac{3}{4}...............(1)
Now consider sin(αβ)=513\sin \left( \alpha -\beta \right)=\dfrac{5}{13}
Now squaring on both sides we get sin2(αβ)=25169{{\sin }^{2}}\left( \alpha -\beta \right)=\dfrac{25}{169}
Now we know that sin2x+cos2x=1{{\sin }^{2}}x+{{\cos }^{2}}x=1
Hence we get cos2(αβ)+2569=1{{\cos }^{2}}\left( \alpha -\beta \right)+\dfrac{25}{69}=1
Hence we get

& {{\cos }^{2}}\left( \alpha -\beta \right)=1-\dfrac{25}{169} \\\ & \Rightarrow {{\cos }^{2}}\left( \alpha -\beta \right)=\dfrac{169-25}{169}=\dfrac{144}{169} \\\ \end{aligned}$$ Now if we take inverse on both sides we get. $\dfrac{1}{{{\cos }^{2}}\left( \alpha -\beta \right)}=\dfrac{169}{144}$ Now we have ${{\sec }^{2}}x=\dfrac{1}{{{\cos }^{2}}x}$ using this identity we get ${{\sec }^{2}}\left( \alpha -\beta \right)=\dfrac{169}{144}$ Now we have the identity we get ${{\tan }^{2}}x+1={{\sec }^{2}}x$ . hence we get $\begin{aligned} & 1+{{\tan }^{2}}\left( \alpha -\beta \right)=\dfrac{169}{144} \\\ & \Rightarrow {{\tan }^{2}}\left( \alpha -\beta \right)=\dfrac{169}{144}-1 \\\ & \Rightarrow {{\tan }^{2}}\left( \alpha -\beta \right)=\dfrac{169-144}{144}=\dfrac{25}{144} \\\ & \Rightarrow \tan \left( \alpha -\beta \right)=\pm \dfrac{5}{12} \\\ \end{aligned}$ Now we have $0\le \alpha ,\beta \le \dfrac{\pi }{4}$ Hence $\dfrac{-\pi }{4}\le \alpha -\beta \le \dfrac{\pi }{4}$ Now the angle $\alpha -\beta $ lies in the fourth of the first quadrant. Now since $\sin \left( \alpha -\beta \right)$ is positive we have $\alpha -\beta $ is in first quadrant And we know that the first quadrant tan is positive. Hence we have $\tan \left( \alpha -\beta \right)=\dfrac{5}{12}.......................\left( 2 \right)$ Now consider $\tan \left( \alpha +\beta +\left( \alpha -\beta \right) \right)$ Now we know that $\tan \left( x+y \right)=\dfrac{\tan x+\tan y}{1-\tan x\tan y}$ Hence we get $$\tan \left( \alpha +\beta +\left( \alpha -\beta \right) \right)=\dfrac{\tan \left( \alpha +\beta \right)+\tan \left( \alpha -\beta \right)}{1-\tan \left( \alpha +\beta \right)\tan \left( \alpha -\beta \right)}$$ Now from equation (1) and equation (2) we get $$\tan \left( \alpha +\beta +\left( \alpha -\beta \right) \right)=\dfrac{\dfrac{3}{4}+\dfrac{5}{12}}{1-\left( \dfrac{3}{4} \right)\left( \dfrac{5}{12} \right)}$$ Now taking LCM we get $$\begin{aligned} & \tan \left( \alpha +\beta +\alpha -\beta \right)=\dfrac{\dfrac{3\times 3}{4\times 3}+\dfrac{5}{12}}{1-\left( \dfrac{15}{48} \right)} \\\ & \Rightarrow \tan \left( \alpha +\beta +\alpha -\beta \right)=\dfrac{\dfrac{9+5}{12}}{\left( \dfrac{48-15}{48} \right)} \\\ & \Rightarrow \tan \left( 2\alpha \right)=\dfrac{\dfrac{14}{1}}{\dfrac{33}{4}}=\dfrac{14\times 4}{33}=\dfrac{56}{33} \\\ \end{aligned}$$ Hence the value of $\tan \left( 2\alpha \right)=\dfrac{56}{33}$ **So, the correct answer is “Option A”.** **Note:** Now we in such sums we can skip evaluating each trigonometric ratio with the help of identities. We know that tan is the ratio of opposite side and adjacent side. Now we can find the length if hypotenuse using Pythagoras theorem. Once we have the length of all three sides we can easily find other trigonometric ratios.