Solveeit Logo

Question

Question: Let \( \cos (\alpha + \beta ) = \) \( \dfrac{4}{5} \) and let \( \sin (\alpha - \beta ) = \) \( \dfr...

Let cos(α+β)=\cos (\alpha + \beta ) = 45\dfrac{4}{5} and let sin(αβ)=\sin (\alpha - \beta ) = 513\dfrac{5}{{13}} , where 0 ≤ α, β ≤ π4\dfrac{\pi }{4} , then tan2α\tan 2\alpha is equal to
A. 207\dfrac{{20}}{7}
B. 2516\dfrac{{25}}{{16}}
C. 5633\dfrac{{56}}{{33}}
D. 1912\dfrac{{19}}{{12}}

Explanation

Solution

Hint : We know the cosine of any angle is the ratio of the base to hypotenuse in a right angled triangle. Similarly, sine of any angle is the ratio of the opposite side to hypotenuse in a right angled triangle. Further, we will use Pythagoras theorem to calculate the other trigonometry ratio which is tan2α\tan 2\alpha .
Formula Used: The following formula is used to get to the final answer,
tan(α+β)=\tan (\alpha + \beta ) = tanα+tanβ1tanαtanβ\dfrac{{\tan \alpha + \tan \beta }}{{1 - \tan \alpha \tan \beta }}

Complete step-by-step answer :
According to the given information, we have
The first function is cos(α+β)=\cos (\alpha + \beta ) = 45\dfrac{4}{5}

Also, we know cos(α+β)=45\cos (\alpha + \beta ) = \dfrac{4}{5}
Therefore take the base to be 4k and hypotenuse as 5k, where k is a constant.
Further, perpendicular = (hypotenuse)2   (base)2\sqrt {{{(hypotenuse)}^2}\;-{\text{ }}{{\left( {base} \right)}^2}}
(5k)2(4k)2\Rightarrow \sqrt {{{(5k)}^2} - {{(4k)}^2}} =9k2= \sqrt {9{k^2}}
Finally we get the perpendicular to be 3k.
Now for a right angled triangle ABC we know that,
tan(α+β)=\tan (\alpha + \beta ) = 34\dfrac{3}{4} ...(1)...(1)
The second function is sin(αβ)=\sin (\alpha - \beta ) = 513\dfrac{5}{{13}}

Also, we know sin(αβ)=513\sin (\alpha - \beta ) = \dfrac{5}{{13}}
Therefore, take the perpendicular to be 5k and hypotenuse as 13k, where k is a constant.
Further, base = (hypotenuse)2   (perpendicular)2\sqrt {{{(hypotenuse)}^2}\;-{\text{ }}{{\left( {perpendicular} \right)}^2}}
(13k)2(5k)2\Rightarrow \sqrt {{{(13k)}^2} - {{(5k)}^2}} =144k2= \sqrt {144{k^2}}
Finally we get the base to be 12k.
Now for a right angled triangle ABC we know that,
Hence we get,
tan(αβ)=\tan (\alpha - \beta ) = 512\dfrac{5}{{12}} ...(2)...(2)
According to the given data,
The following formula is used to get,
tan(α+β)=\tan (\alpha + \beta ) = tanα+tanβ1tanαtanβ\dfrac{{\tan \alpha + \tan \beta }}{{1 - \tan \alpha \tan \beta }}
tan((α+β)+(αβ))\tan ((\alpha + \beta ) + (\alpha - \beta )) = tan(α+β)+tan(αβ)1tan(α+β)tan(αβ)\dfrac{{\tan (\alpha + \beta ) + \tan (\alpha - \beta )}}{{1 - \tan (\alpha + \beta )\tan (\alpha - \beta )}}
On simplifying further we get,
tan2α\tan 2\alpha =34+512134×512= \dfrac{{\dfrac{3}{4} + \dfrac{5}{{12}}}}{{1 - \dfrac{3}{4} \times \dfrac{5}{{12}}}}
36+2048481548\Rightarrow \dfrac{{\dfrac{{36 + 20}}{{48}}}}{{\dfrac{{48 - 15}}{{48}}}} =5633= \dfrac{{56}}{{33}}
So, the correct answer is “5633\dfrac{{56}}{{33}} ”.

Note : In order to solve problems of this type the key is to have a basic understanding of trigonometric equations and values and also learn its implications. Students should be aware of applications of the trigonometric values in order to simplify the given equation.