Question
Mathematics Question on Trigonometric Functions
Let cos (α + β) = 54 and sin (α - β) = 135, where 0 < α, β < 4π , then tan 2α=?
A
720
B
3356
C
1219
D
1625
Answer
3356
Explanation
Solution
tan2α = cos 2αsin 2α
tan2α = 1−2sin2 αsin 2α
sin2α = sin[(α+β)+(α−β)]
sin2α = sin(α+β)cos(α−β) + sin(α−β)cos(α+β)
sin2α = 53 x 1312 + 135 x 54
sin2α = 6536 + 6520
cos2α = 1 - 2 sin2 α
cos2α =1-2 x (6556)2
cos2α =5633
tan2α = (33/65)(56/65)
tan2α =3356
Therefore, the correct option is (B) 3356