Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

Let cos (α + β) = 45\frac {4}{5} and sin (α - β) = 513\frac {5}{13}, where 0 < α, β < π4\frac {π}{4} , then tan 2α=?

A

207\frac {20}{7}

B

5633\frac {56}{33}

C

1912\frac {19}{12}

D

2516\frac {25}{16}

Answer

5633\frac {56}{33}

Explanation

Solution

tan2α = sin 2αcos 2α\frac {sin\ 2α}{cos\ 2α}
tan2α = sin 2α12sin2 α\frac {sin \ 2α}{1-2sin^2 \ α}
sin2α = sin[(α+β)+(α−β)]
sin2α = sin(α+β)cos(α−β) + sin(α−β)cos(α+β)
sin2α = 35\frac {3}{5} x 1213\frac {12}{13} + 513\frac {5}{13} x 45\frac {4}{5}
sin2α = 3665\frac {36}{65} + 2065\frac {20}{65}
cos2α = 1 - 2 sin2 α
cos2α =1-2 x (5665)2(\frac {56}{65})^2
cos2α =3356\frac {33}{56}
tan2α = (56/65)(33/65)\frac {(56/65)}{(33/65)}
tan2α =5633\frac {56}{33}

Therefore, the correct option is (B) 5633\frac {56}{33}