Solveeit Logo

Question

Question: Let complex numbers \(\alpha {\text{ and }}\dfrac{1}{\alpha }\) lie on circles \({\left( {x - {x_o}}...

Let complex numbers α and 1α\alpha {\text{ and }}\dfrac{1}{\alpha } lie on circles (xxo)2+(yyo)2=r2{\left( {x - {x_o}} \right)^2} + {\left( {y - {y_o}} \right)^2} = {r^2} and (xxo)2+(yyo)2=4r2{\left( {x - {x_o}} \right)^2} + {\left( {y - {y_o}} \right)^2} = 4{r^2}, respectively. If zo=xo+iyo{z_o} = {x_o} + i{y_o} satisfies the equation, 2zo2=r2+22{\left| {{z_o}} \right|^2} = {r^2} + 2, then α\left| \alpha \right| =
(a)12\left( a \right)\dfrac{1}{{\sqrt 2 }}
(b)12\left( b \right)\dfrac{1}{2}
(c)17\left( c \right)\dfrac{1}{{\sqrt 7 }}
(d)13\left( d \right)\dfrac{1}{3}

Explanation

Solution

In this particular question use the concept that in the standard equation of the circle (xh)2+(yk)2=r2{\left( {x - h} \right)^2} + {\left( {y - k} \right)^2} = {r^2}, (h, k) and r are the center and the radius of the circle respectively and in complex plane we can write the equation of the circle, zzo=r\left| {z - {z_o}} \right| = r where z and zo{z_o} both are the complex numbers and r is the radius of the circle, so use these concepts to reach the solution of the question.

Complete step-by-step answer :
Given data:
Complex numbers α and 1α\alpha {\text{ and }}\dfrac{1}{\alpha } lie on circles (xxo)2+(yyo)2=r2{\left( {x - {x_o}} \right)^2} + {\left( {y - {y_o}} \right)^2} = {r^2} and (xxo)2+(yyo)2=4r2{\left( {x - {x_o}} \right)^2} + {\left( {y - {y_o}} \right)^2} = 4{r^2}.
So the equations of the circles in the complex plane is written as,
zzo=r\Rightarrow \left| {z - {z_o}} \right| = r and zzo=2r\left| {z - {z_o}} \right| = 2r
Now α and 1α\alpha {\text{ and }}\dfrac{1}{\alpha } which represents the complex number and lie on the circle so it satisfies the above equation respectively, so we have,
αzo=r\Rightarrow \left| {\alpha - {z_o}} \right| = r, and 1αzo=2r\left| {\dfrac{1}{\alpha } - {z_o}} \right| = 2r
αzo=r\Rightarrow \left| {\alpha - {z_o}} \right| = r, and 1αzoα=2r\dfrac{{\left| {1 - \alpha {z_o}} \right|}}{{\left| \alpha \right|}} = 2r
αzo=r\Rightarrow \left| {\alpha - {z_o}} \right| = r, and 1αzo=2rα\left| {1 - \alpha {z_o}} \right| = 2r\left| \alpha \right|
Now squaring on both sides in both of the above equation we have,
αzo2=r2\Rightarrow {\left| {\alpha - {z_o}} \right|^2} = {r^2}, and 1αzo2=4r2α2{\left| {1 - \alpha {z_o}} \right|^2} = 4{r^2}{\left| \alpha \right|^2}
Now as we know that ab2=(ab)(ab)=(ab)(aˉbˉ){\left| {a - b} \right|^2} = \left( {a - b} \right)\left( {\overline {a - b} } \right) = \left( {a - b} \right)\left( {\bar a - \bar b} \right) and 1ab2=(1aˉb)(1abˉ){\left| {1 - ab} \right|^2} = \left( {1 - \bar ab} \right)\left( {1 - a\bar b} \right) where a and b both represents the complex numbers so use these properties in the above equation we have,
(αzo)(αzo)=r2\Rightarrow \left( {\alpha - {z_o}} \right)\left( {\overline {\alpha - {z_o}} } \right) = {r^2} , and (1αˉzo)(1αzˉo)=4r2α2\left( {1 - \bar \alpha {z_o}} \right)\left( {1 - \alpha {{\bar z}_o}} \right) = 4{r^2}{\left| \alpha \right|^2}
(αzo)(αˉzˉo)=r2\Rightarrow \left( {\alpha - {z_o}} \right)\left( {\bar \alpha - {{\bar z}_o}} \right) = {r^2} , and (1αˉzo)(1αzˉo)=4r2α2\left( {1 - \bar \alpha {z_o}} \right)\left( {1 - \alpha {{\bar z}_o}} \right) = 4{r^2}{\left| \alpha \right|^2}
Now simplify it we have,
(αzo)(αˉzˉo)=r2\Rightarrow \left( {\alpha - {z_o}} \right)\left( {\bar \alpha - {{\bar z}_o}} \right) = {r^2}
ααˉαzˉozoαˉ+zozˉo=r2\Rightarrow \alpha \bar \alpha - \alpha {\bar z_o} - {z_o}\bar \alpha + {z_o}{\bar z_o} = {r^2}
αzˉo+zoαˉ=ααˉ+zozˉor2\Rightarrow \alpha {\bar z_o} + {z_o}\bar \alpha = \alpha \bar \alpha + {z_o}{\bar z_o} - {r^2}
αzˉo+zoαˉ=α2+zo2r2\Rightarrow \alpha {\bar z_o} + {z_o}\bar \alpha = {\left| \alpha \right|^2} + {\left| {{z_o}} \right|^2} - {r^2}..................... (1), [ααˉ=α2,zozˉo=zo2]\left[ {\because \alpha \bar \alpha = {{\left| \alpha \right|}^2},{z_o}{{\bar z}_o} = {{\left| {{z_o}} \right|}^2}} \right]
And
(1αˉzo)(1αzˉo)=4r2α2\Rightarrow \left( {1 - \bar \alpha {z_o}} \right)\left( {1 - \alpha {{\bar z}_o}} \right) = 4{r^2}{\left| \alpha \right|^2}
1αzˉozoαˉ+ααˉzozˉo=4r2α2\Rightarrow 1 - \alpha {\bar z_o} - {z_o}\bar \alpha + \alpha \bar \alpha {z_o}{\bar z_o} = 4{r^2}{\left| \alpha \right|^2}
1αzˉozoαˉ+α2zo2=4r2α2\Rightarrow 1 - \alpha {\bar z_o} - {z_o}\bar \alpha + {\left| \alpha \right|^2}{\left| {{z_o}} \right|^2} = 4{r^2}{\left| \alpha \right|^2}
αzˉo+zoαˉ=1+α2zo24r2α2\Rightarrow \alpha {\bar z_o} + {z_o}\bar \alpha = 1 + {\left| \alpha \right|^2}{\left| {{z_o}} \right|^2} - 4{r^2}{\left| \alpha \right|^2}................... (2)
Now as we see that the LHS of the equation (1) and (2) are same so equate RHS of the equation (1) and (2) we have,
α2+zo2r2=1+α2zo24r2α2\Rightarrow {\left| \alpha \right|^2} + {\left| {{z_o}} \right|^2} - {r^2} = 1 + {\left| \alpha \right|^2}{\left| {{z_o}} \right|^2} - 4{r^2}{\left| \alpha \right|^2}.............. (3)
Now it is given that 2zo2=r2+22{\left| {{z_o}} \right|^2} = {r^2} + 2, zo2=r2+22 \Rightarrow {\left| {{z_o}} \right|^2} = \dfrac{{{r^2} + 2}}{2} so substitute this value in equation (3) we have,
α2+r2+22r2=1+α2(r2+22)4r2α2\Rightarrow {\left| \alpha \right|^2} + \dfrac{{{r^2} + 2}}{2} - {r^2} = 1 + {\left| \alpha \right|^2}\left( {\dfrac{{{r^2} + 2}}{2}} \right) - 4{r^2}{\left| \alpha \right|^2}
Now simplify it we have,
α2r22+1=1+α2r22+α24r2α2\Rightarrow {\left| \alpha \right|^2} - \dfrac{{{r^2}}}{2} + 1 = 1 + \dfrac{{{{\left| \alpha \right|}^2}{r^2}}}{2} + {\left| \alpha \right|^2} - 4{r^2}{\left| \alpha \right|^2}
Now cancel out the same terms with same sign from LHS and RHS we have,
r22=α2r224r2α2\Rightarrow - \dfrac{{{r^2}}}{2} = \dfrac{{{{\left| \alpha \right|}^2}{r^2}}}{2} - 4{r^2}{\left| \alpha \right|^2}
Now divide by r2{r^2} throughout we have,
12=α224α2\Rightarrow - \dfrac{1}{2} = \dfrac{{{{\left| \alpha \right|}^2}}}{2} - 4{\left| \alpha \right|^2}
12=7α22\Rightarrow - \dfrac{1}{2} = - \dfrac{{7{{\left| \alpha \right|}^2}}}{2}
7α2=1\Rightarrow 7{\left| \alpha \right|^2} = 1
α2=17\Rightarrow {\left| \alpha \right|^2} = \dfrac{1}{7}
Now take square root on both sides we have,
α=17=17\Rightarrow \left| \alpha \right| = \sqrt {\dfrac{1}{7}} = \dfrac{1}{{\sqrt 7 }}
So this is the required answer.
Hence option (c) is the correct answer.

Note : Whenever we face such types of questions the key concept we have to remember is that always recall that ab2=(ab)(ab)=(ab)(aˉbˉ){\left| {a - b} \right|^2} = \left( {a - b} \right)\left( {\overline {a - b} } \right) = \left( {a - b} \right)\left( {\bar a - \bar b} \right) and 1ab2=(1aˉb)(1abˉ){\left| {1 - ab} \right|^2} = \left( {1 - \bar ab} \right)\left( {1 - a\bar b} \right) where a and b both represents the complex numbers, so according to this property simplify the equation as above and then equate the RHS of the above equations as LHS are same then again simplify the equation using the given condition in the question as above we will get the required answer.