Solveeit Logo

Question

Question: Let complex number \[z\] be such that \[\left| {z - \dfrac{6}{z}} \right| = 5\], then the maximum va...

Let complex number zz be such that z6z=5\left| {z - \dfrac{6}{z}} \right| = 5, then the maximum value of z\left| z \right| will be:
(a) 2
(b) 3
(c) 5
(d) 6

Explanation

Solution

Here, we will use the concept of complex numbers. We will use the property of sum of complex numbers and factorisation of a quadratic polynomial by splitting the middle term to find the maximum value of z\left| z \right|.

Formula Used: We will use the following formulas:

  1. If a complex number z\left| z \right| is the sum of two complex numbers z1\left| {{z_1}} \right| and z2\left| {{z_2}} \right|, then z=z1+z2z1+z2\left| z \right| = \left| {{z_1} + {z_2}} \right| \le \left| {{z_1}} \right| + \left| {{z_2}} \right|.
  2. If (xa)(xb)<0\left( {x - a} \right)\left( {x - b} \right) < 0, where a<ba < b, then a<x<ba < x < b.

Complete step by step solution:
We will use the sum property of complex number to find the maximum value of z\left| z \right|.
Substituting z1=z6z{z_1} = z - \dfrac{6}{z} and z2=6z{z_2} = \dfrac{6}{z} in the formula z=z1+z2z1+z2\left| z \right| = \left| {{z_1} + {z_2}} \right| \le \left| {{z_1}} \right| + \left| {{z_2}} \right|, we get
z6z+6zz6z+6z\Rightarrow \left| {z - \dfrac{6}{z} + \dfrac{6}{z}} \right| \le \left| {z - \dfrac{6}{z}} \right| + \left| {\dfrac{6}{z}} \right|
Simplifying the expression, we get
zz6z+6z\Rightarrow \left| z \right| \le \left| {z - \dfrac{6}{z}} \right| + \dfrac{{\left| 6 \right|}}{{\left| z \right|}}
Since 6 is a positive number, its absolute value is also 6.
Therefore, the equation becomes
zz6z+6z\Rightarrow \left| z \right| \le \left| {z - \dfrac{6}{z}} \right| + \dfrac{6}{{\left| z \right|}}
Substituting z6z=5\left| {z - \dfrac{6}{z}} \right| = 5 in the inequation, we get
z5+6z\Rightarrow \left| z \right| \le 5 + \dfrac{6}{{\left| z \right|}}
Let z=y\left| z \right| = y.
Rewriting the inequation, we get
y5+6y\Rightarrow y \le 5 + \dfrac{6}{y}
Multiplying both sides of the inequation by yy using the distributive law of multiplication, we get
y(y)(5+6y)(y) y25y+6\begin{array}{l} \Rightarrow y\left( y \right) \le \left( {5 + \dfrac{6}{y}} \right)\left( y \right)\\\ \Rightarrow {y^2} \le 5y + 6\end{array}
Subtracting 5y5y and 6 from both sides of the inequation, we get
y25y60\Rightarrow {y^2} - 5y - 6 \le 0
This inequation is true for all values of yy that satisfy the quadratic polynomial y25y6{y^2} - 5y - 6.
We will factorise the quadratic polynomial by splitting the middle term.
Factorising the quadratic polynomial, we get
y26y+y60 y(y6)+1(y6)0 (y6)(y+1)0\begin{array}{l} \Rightarrow {y^2} - 6y + y - 6 \le 0\\\ \Rightarrow y\left( {y - 6} \right) + 1\left( {y - 6} \right) \le 0\\\ \Rightarrow \left( {y - 6} \right)\left( {y + 1} \right) \le 0\end{array}
We know that if (xa)(xb)<0\left( {x - a} \right)\left( {x - b} \right) < 0, where a<ba < b, then a<x<ba < x < b.
Therefore, since (y6)(y+1)0\left( {y - 6} \right)\left( {y + 1} \right) \le 0, we get
1y6\Rightarrow - 1 \le y \le 6
Therefore, the maximum value of yy is 6.
Substituting z=y\left| z \right| = y, we get the maximum value of z\left| z \right| as 6.

Thus, the correct option is option (d).

Note:
We multiplied both sides of the inequation y5+6yy \le 5 + \dfrac{6}{y} by yy without changing the sign of inequality. This is because since z\left| z \right| is always positive, yy is also positive.
We have used the distributive law of multiplication to multiply (y)\left( y \right) by (5+6y)\left( {5 + \dfrac{6}{y}} \right). The distributive law of multiplication states that a(b+c)=ab+aca\left( {b + c} \right) = a \cdot b + a \cdot c.