Solveeit Logo

Question

Question: Let $C_1$ and $C_2$ be the graphs of the functions $y=x^2$ and $y=2x$, $0 \leq x \leq 1$ respectivel...

Let C1C_1 and C2C_2 be the graphs of the functions y=x2y=x^2 and y=2xy=2x, 0x10 \leq x \leq 1 respectively. Let C3C_3 be the graph of a function y=f(x)y=f(x), 0x10 \leq x \leq 1, f(0)=0f(0)=0. For a point PP on C1C_1, let the lines through PP, parallel to the axes, meet C2C_2 and C3C_3 at QQ and RR respectively (see figure.)

If for every position of PP (on C1C_1), the areas of the shaded regions OPQOPQ and ORPORP are equal, determine the function f(x)f(x).

Answer

f(x)=\frac{x^3}{2}

Explanation

Solution

We start by letting

P=(a,a2)(0a1)P=(a,a^2) \quad (0\le a\le 1)

since PP lies on C1:y=x2C_1: y=x^2.

Step 1. Finding QQ:

The horizontal line through PP has equation

y=a2.y=a^2.

This line meets C2:y=2xC_2: y=2x when

a2=2xx=a22.a^2=2x\quad\Longrightarrow\quad x=\frac{a^2}{2}.

Thus,

Q=(a22,a2).Q=\left(\frac{a^2}{2},\,a^2\right).

Step 2. Finding RR:

The vertical line through PP is x=ax=a. It meets C3:y=f(x)C_3: y=f(x) at

R=(a,f(a)).R=(a,f(a)).

We are given f(0)=0f(0)=0.

Step 3. Area Calculation:

The two shaded regions are triangles:

  • OPQ\triangle OPQ with vertices O=(0,0)O=(0,0), P=(a,a2)P=(a,a^2), Q=(a22,a2)Q=\left(\frac{a^2}{2}, a^2\right).
  • ORP\triangle ORP with vertices O=(0,0)O=(0,0), R=(a,f(a))R=(a,f(a)), P=(a,a2)P=(a,a^2).

Using the determinant formula for the area of a triangle with vertices (x1,y1)(x_1,y_1) and (x2,y2)(x_2,y_2),

Area=12x1y2y1x2,\text{Area}=\frac{1}{2}\left| x_1y_2-y_1x_2 \right|,

we find:

For OPQ\triangle OPQ:

AreaOPQ=12aa2  a2a22=12(a3a42)=a32a44.\text{Area}_{OPQ}=\frac{1}{2}\left|a\cdot a^2-\;a^2\cdot\frac{a^2}{2}\right| =\frac{1}{2}\left(a^3-\frac{a^4}{2}\right) =\frac{a^3}{2}-\frac{a^4}{4}.

For ORP\triangle ORP:

AreaORP=12af(a)a2a=12af(a)a3.\text{Area}_{ORP}=\frac{1}{2}\left|a\cdot f(a)-a^2\cdot a\right| =\frac{1}{2}\left|a f(a)-a^3\right|.

Since the figure suggests that f(a)<a2f(a) < a^2 (so that the vertical segment PRPR is downward), we have:

af(a)a3=a(a2f(a)).|a f(a)-a^3|=a(a^2-f(a)).

Thus,

AreaORP=a2(a2f(a)).\text{Area}_{ORP}=\frac{a}{2}\left(a^2-f(a)\right).

Step 4. Equating the Areas:

The condition states:

AreaOPQ=AreaORP.\text{Area}_{OPQ}=\text{Area}_{ORP}.

Thus,

a32a44=a2(a2f(a)).\frac{a^3}{2}-\frac{a^4}{4}=\frac{a}{2}(a^2-f(a)).

Multiply both sides by 2:

a3a42=a(a2f(a))=a3af(a).a^3 - \frac{a^4}{2} = a(a^2-f(a))=a^3- a f(a).

Subtract a3a^3 from both sides:

a42=af(a).-\frac{a^4}{2}=-a f(a).

Multiply both sides by 1-1:

a42=af(a).\frac{a^4}{2}=a f(a).

For a0a\ne0, dividing both sides by aa:

f(a)=a32.f(a)=\frac{a^3}{2}.

Since aa was any value in [0,1][0,1], we have:

f(x)=x32for0x1.f(x)=\frac{x^3}{2}\quad \text{for}\quad 0\le x\le 1.