Solveeit Logo

Question

Mathematics Question on Circles

Let C:x2+y2=4C: x^2 + y^2 = 4 and C:x2+y24λx+9=0C': x^2 + y^2 - 4\lambda x + 9 = 0 be two circles. If the set of all values of λ\lambda such that the circles CC and CC' intersect at two distinct points is R=[a,b]R = [a, b], then the point (8a+12,16b20)(8a + 12, 16b - 20) lies on the curve:

A

x2+2y25x+6y=3x^2 + 2y^2 - 5x + 6y = 3

B

5x2y=115x^2 - y = -11

C

x24y2=7x^2 - 4y^2 = 7

D

6x2+y2=426x^2 + y^2 = 42

Answer

6x2+y2=426x^2 + y^2 = 42

Explanation

Solution

We are given the two circles:

C1:x2+y2=4andC2:x2+y24x+9=0C_1: x^2 + y^2 = 4 \quad \text{and} \quad C_2: x^2 + y^2 - 4x + 9 = 0

To find the points of intersection, subtract the equation of C1C_1 from the equation of C2C_2:

(x2+y24x+9)(x2+y2)=04(x^2 + y^2 - 4x + 9) - (x^2 + y^2) = 0 - 4

Simplifying:

4x+9=44x=13x=134-4x + 9 = -4 \Rightarrow -4x = -13 \Rightarrow x = \frac{13}{4}

Thus, the value of xx is 134\frac{13}{4}.

Now, substitute x=134x = \frac{13}{4} into the equation of C1C_1 to find yy:

(134)2+y2=4\left(\frac{13}{4}\right)^2 + y^2 = 4

16916+y2=4\frac{169}{16} + y^2 = 4

y2=416916=641616916=10516y^2 = 4 - \frac{169}{16} = \frac{64}{16} - \frac{169}{16} = -\frac{105}{16}

This gives y=±10516y = \pm \sqrt{\frac{105}{16}}, i.e., y=±1054y = \pm \frac{\sqrt{105}}{4}.

Thus, the points of intersection are x=134x = \frac{13}{4} and y=±1054y = \pm \frac{\sqrt{105}}{4}.

Now, substitute the values of aa and bb:

a=134,b=1054a = \frac{13}{4}, \quad b = \frac{\sqrt{105}}{4}

We need to find 8a+12,16b208a + 12, 16b - 20:

8a+12=8×134+12=26+12=388a + 12 = 8 \times \frac{13}{4} + 12 = 26 + 12 = 38

16b20=16×105420=41052016b - 20 = 16 \times \frac{\sqrt{105}}{4} - 20 = 4\sqrt{105} - 20

This point (38,410520)(38, 4\sqrt{105} - 20) lies on the curve:

6x2+y2=426x^2 + y^2 = 42

Substitute x=38x = 38 and y=410520y = 4\sqrt{105} - 20 into the equation and verify.