Solveeit Logo

Question

Mathematics Question on Binomial theorem

Let CrC_r denote the binomial coefficient of xrx^r in the expansion of (1+x)10(1 + x)^{10}. If for α,βRα, β∈R, C1\+32C2\+53C3\+C_1 \+ 3⋅2 C_2 \+ 5⋅3 C_3 \+ … upto 10 terms =α×2112β1(C0+C12+C23..\frac {α×211}{2^β−1}(C_0+\frac {C_1}{2}+\frac {C_2}{3}…..upto 10 terms) then the value of α+βα + β is equal to _______.

Answer

Given that C1\+23C2\+53C3\+10C_1 \+ 2⋅3C_2 \+ 5⋅3C_3 \+ … 10 terms
=α2112β1(C1+C22+...)= \frac {α⋅2^{11}}{2^β−1}(C_1+\frac {C_2}{2}+…...)

r=110r(2r1)Cr=α2112β1(r=110Crr)\displaystyle\sum_{r=1}^{10} r(2r−1)C_r= \frac {α⋅2^{11}}{2^β−1} (\displaystyle\sum_{r=1}^{10}\frac {C_r}{r})

Using C1\+2C2\+.+nCn=n.2n1C_1 \+ 2C_2 \+ …. + nC_n = n.2^{n – 1}
12C1\+22C2\++n2Cn=n.2n1+n(n1)2n21^2C_1 \+ 2^2C_2 \+ … + n^2C_n = n.^{2n – 1} + n(n – 1)2^{n – 2}
and,
C0+C12+...Cnn+1=2n+11n+1C_0+\frac {C_1}{2}+…...\frac {C_n}{n+1}=\frac {2^{n+1}−1}{n+1}
we get,
2(10.29\+10.9.28)10.292(10.2^9 \+ 10.9.2^8) – 10.2^9
=α2112β1(2111)11=\frac {α⋅2^{11}}{2^β−1}\frac {(2^{11}−1)}{11}
On comparing both side,
2^{11}.25=$$\frac {α⋅2^{11}}{2^β−1}\frac {(2^{11}−1)}{11}
α=25×11=275⇒ α = 25 × 11 = 275
β=11β = 11
α+β=286⇒ α + β = 286

So, the answer is 286286.