Solveeit Logo

Question

Mathematics Question on Conic sections

Let C be the circle with centre at (1, 1) and radius = 1. If T is the circle centred at (0, y) passing through origin and touching the circle CC externally, then the radius ofTTis equal to

A

12\frac{1}{2}

B

14\frac{1}{4}

C

32\frac{\sqrt{3}}{2}

D

32\frac{\sqrt{3}}{\sqrt{2}}

Answer

14\frac{1}{4}

Explanation

Solution


C(x1)2+(y1)2=1C \equiv(x-1)^{2}+(y-1)^{2}=1
Radius of T=yT=|y|
TT touches CC externally
(01)2+(y1)2=(1+y)2(0-1)^{2}+(y-1)^{2}=(1+|y|)^{2}
1+y2+12y=1+y2+2y\Rightarrow 1+y^{2}+1-2 y=1+y^{2}+2|y|
If y>0y>\,0, y2+22y=y2+1+2yy^{2}+2-2 y=y^{2}+1+2 y
4y=1\Rightarrow 4 y=1
y=14\Rightarrow y=\frac{1}{4}
If $y