Solveeit Logo

Question

Multivariable Calculus Question on Functions of Two or Three Real Variables

Let cc be a positive real number and let u:R2Ru: \mathbb{R}^2 \to \mathbb{R} be defined by u(x,t)=12cxctx+ctes2dsfor (x,t)R2.u(x,t) = \frac{1}{2c} \int_{x-ct}^{x+ct} e^{s^2} \, ds \quad \text{for} \ (x,t) \in \mathbb{R}^2. Then which one of the following is true?

A

2ut2=c22ux2 on R2.\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2} \ \text{on} \ \mathbb{R}^2.

B

ut=c22ux2 on R2.\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2} \ \text{on} \ \mathbb{R}^2.

C

utux=0 on R2.\frac{\partial u}{\partial t} \frac{\partial u}{\partial x} = 0 \ \text{on} \ \mathbb{R}^2.

D

2utx=0 on R2.\frac{\partial^2 u}{\partial t \partial x} = 0 \ \text{on} \ \mathbb{R}^2.

Answer

2ut2=c22ux2 on R2.\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2} \ \text{on} \ \mathbb{R}^2.

Explanation

Solution

The correct option is (A): 2ut2=c22ux2 on R2.\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2} \ \text{on} \ \mathbb{R}^2.