Solveeit Logo

Question

Mathematics Question on Circle

Let C be a circle passing through the points A(2, –1) and B (3, 4). The line segment AB is not a diameter of C. If r is the radius of C and its centre lies on the circle
(x5)2+(y1)2=132(x−5)^2+(y−1)^2=\frac{13}{2}
then r2 is equal to

A

32

B

652\frac{65}{2}

C

612\frac{61}{2}

D

30

Answer

652\frac{65}{2}

Explanation

Solution

The correct answer is (B) : 652\frac{65}{2}
Equation of perpendicular bisector of AB is
y32=15(x52)x+5y=10y−32=−\frac{1}{5}(x−52)⇒x+5y=10
Solving it with equation of given circle,
(x5)2+(10x51)2=132(x−5)^2+(\frac{10−x}{5}−1)^2=\frac{13}{2}
(x5)2(1+125)=132⇒(x−5)^2(1+\frac{1}{25})=\frac{13}{2}
x5=±52x=52or152⇒x−5=±\frac{5}{2}⇒x=\frac{5}{2} or \frac{15}{2}
But x52x≠\frac{5}{2}
because AB is not the diameter.
So, centre will be (152,12)(\frac{15}{2},\frac{1}{2})
Now r2=(1522)2+(12+1)2r^2=(\frac{15}{2}−2)^2+(\frac{1}{2}+1)^2
=652=\frac{65}{2}