Solveeit Logo

Question

Mathematics Question on Integral Calculus

Let β(m,n)=01xm1(1x)n1dx\beta(m, n) = \int_{0}^{1}x^{m-1}(1-x)^{n-1}dx, m,n>0m, n > 0. If 01(1x10)20dx=aβ(b,c)\int_{0}^{1}(1-x^{10})^{20}dx = a\beta(b,c), then 100(a+b+x)100(a+b+x) equals

A

1021

B

1120

C

2012

D

2120

Answer

2120

Explanation

Solution

Given:

01(1x10)20dx=a×β(b,c).\int_0^1 (1 - x^{10})^{20} dx = a \times \beta(b, c).

Step 1: Comparison with the Beta Function

Recall the beta function definition:

β(m,n)=01xm1(1x)n1dx.\beta(m, n) = \int_0^1 x^{m-1}(1-x)^{n-1} dx.

To match this form, let u=x10u = x^{10}. Then, du=10x9dxdu = 10x^9 dx, or:

dx=du10x9.dx = \frac{du}{10x^9}.

Changing the limits of integration, when xx varies from 0 to 1, uu also varies from 0 to 1. Thus, the integral becomes:

01(1u)20du10x9.\int_0^1 (1 - u)^{20} \cdot \frac{du}{10x^9}.

Since x=u1/10x = u^{1/10}, we have:

x9=u9/10,so110x9=110u9/10.x^9 = u^{9/10}, \quad \text{so} \quad \frac{1}{10x^9} = \frac{1}{10}u^{-9/10}.

The integral becomes:

01(1u)20110u9/10du=11001u9/10(1u)20du.\int_0^1 (1 - u)^{20} \cdot \frac{1}{10}u^{-9/10} du = \frac{1}{10} \int_0^1 u^{-9/10}(1 - u)^{20} du.

Comparing this with the beta function form:

β(110,21)=01u1101(1u)20du.\beta\left(\frac{1}{10}, 21\right) = \int_0^1 u^{\frac{1}{10}-1}(1-u)^{20} du.

Thus, we can set:

a=110,b=110,c=21.a = \frac{1}{10}, \quad b = \frac{1}{10}, \quad c = 21.

Step 2: Calculate the Expression

Now, we need to evaluate:

100(a+b+c)=100(110+110+21)=100×(0.2+21)=100×21.2=2120.100(a + b + c) = 100 \left(\frac{1}{10} + \frac{1}{10} + 21\right) = 100 \times \left(0.2 + 21\right) = 100 \times 21.2 = 2120.

Therefore, the correct answer is Option (4).