Question
Mathematics Question on Integral Calculus
Let β(m,n)=∫01xm−1(1−x)n−1dx, m,n>0. If ∫01(1−x10)20dx=aβ(b,c), then 100(a+b+x) equals
1021
1120
2012
2120
2120
Solution
Given:
∫01(1−x10)20dx=a×β(b,c).
Step 1: Comparison with the Beta Function
Recall the beta function definition:
β(m,n)=∫01xm−1(1−x)n−1dx.
To match this form, let u=x10. Then, du=10x9dx, or:
dx=10x9du.
Changing the limits of integration, when x varies from 0 to 1, u also varies from 0 to 1. Thus, the integral becomes:
∫01(1−u)20⋅10x9du.
Since x=u1/10, we have:
x9=u9/10,so10x91=101u−9/10.
The integral becomes:
∫01(1−u)20⋅101u−9/10du=101∫01u−9/10(1−u)20du.
Comparing this with the beta function form:
β(101,21)=∫01u101−1(1−u)20du.
Thus, we can set:
a=101,b=101,c=21.
Step 2: Calculate the Expression
Now, we need to evaluate:
100(a+b+c)=100(101+101+21)=100×(0.2+21)=100×21.2=2120.
Therefore, the correct answer is Option (4).