Solveeit Logo

Question

Mathematics Question on Matrices

Let β\beta be a real number. Consider the matrix
A=(β01\212\312)A=\begin{pmatrix}\beta & 0 & 1 \\\2 & 1 & -2 \\\3 & 1 & -2\end{pmatrix}
If A7(β1)A6βA5A^7-(\beta-1) A^6-\beta A^5 is a singular matrix, then the value of 9β9 \beta is __.

Answer

Given :
A=[β01 212 312]A=\begin{bmatrix} \beta & 0 & 1 \\\ 2 & 1 & -2 \\\ 3 & 1 & -2 \end{bmatrix}
det(A)=−1 ……(i)
So, For A7 − (β − 1)A6 − βA5 to be singular
|A5| |(A2 − (β − 1)A − β| = 0
⇒ |A5| |(A + I) (A − βI)| = 0 …..(ii)
∴|A5| |A + I| |A − βI| = 0
As we know, |A| ≠ 0
|A+I| or |A−βI| = 0
[β+101 222 311]=0⇒\begin{bmatrix} \beta+1 & 0 & 1 \\\ 2 & 2 & -2 \\\ 3 & 1 & -1 \end{bmatrix}=0 {|A + I| ≠ 0}
It is Given that , −1=0 (Rejected)
AβI=001 21β2 312β=0∴ | A − β I | =\begin{vmatrix} 0 & 0 & 1 \\\ 2 & 1-\beta & -2 \\\ 3 & 1 & -2-\beta \end{vmatrix}=0
⇒ 2 − 3(1 − β) = 0
β=13\beta=\frac{1}{3}
Therefore, 9β = 3.
So, the correct answer is 3.