Question
Mathematics Question on Matrices
Let β be a real number. Consider the matrix
A=β\2\30111−2−2
If A7−(β−1)A6−βA5 is a singular matrix, then the value of 9β is __.
Answer
Given :
A=β 2 30111−2−2
det(A)=−1 ……(i)
So, For A7 − (β − 1)A6 − βA5 to be singular
|A5| |(A2 − (β − 1)A − β| = 0
⇒ |A5| |(A + I) (A − βI)| = 0 …..(ii)
∴|A5| |A + I| |A − βI| = 0
As we know, |A| ≠ 0
|A+I| or |A−βI| = 0
⇒β+1 2 30211−2−1=0 {|A + I| ≠ 0}
It is Given that , −1=0 (Rejected)
∴∣A−βI∣=0 2 301−β11−2−2−β=0
⇒ 2 − 3(1 − β) = 0
⇒ β=31
Therefore, 9β = 3.
So, the correct answer is 3.