Solveeit Logo

Question

Question: Let $\begin{vmatrix} 1+x & x & x^2 \\ x & 1+x & x^2 \\ x^2 & x & 1+x \end{vmatrix}$ = $-\frac{1}{5...

Let

1+xxx2x1+xx2x2x1+x\begin{vmatrix} 1+x & x & x^2 \\ x & 1+x & x^2 \\ x^2 & x & 1+x \end{vmatrix}

= 155(xα1)(xα2)(xα3)(xα4)-\frac{1}{55}(x-\alpha_1)(x-\alpha_2)(x-\alpha_3)(x-\alpha_4) be an identity in xx, where α1\alpha_1, α2\alpha_2, α3\alpha_3, α4\alpha_4 are independent of xx. The value of α1×α2×α3×α4|\alpha_1 \times \alpha_2 \times \alpha_3 \times \alpha_4| is

Answer

1

Explanation

Solution

Let the given determinant be D(x)D(x).

D(x)=1+xxx2x1+xx2x2x1+xD(x) = \begin{vmatrix} 1+x & x & x^2 \\ x & 1+x & x^2 \\ x^2 & x & 1+x \end{vmatrix}

To evaluate the determinant, we apply column operations: C1C1+C2+C3C_1 \to C_1 + C_2 + C_3 D(x)=(1+x)+x+x2xx2x+(1+x)+x21+xx2x2+x+(1+x)x1+xD(x) = \begin{vmatrix} (1+x)+x+x^2 & x & x^2 \\ x+(1+x)+x^2 & 1+x & x^2 \\ x^2+x+(1+x) & x & 1+x \end{vmatrix} D(x)=1+2x+x2xx21+2x+x21+xx21+2x+x2x1+xD(x) = \begin{vmatrix} 1+2x+x^2 & x & x^2 \\ 1+2x+x^2 & 1+x & x^2 \\ 1+2x+x^2 & x & 1+x \end{vmatrix}

Factor out (1+2x+x2)(1+2x+x^2) from the first column. Note that 1+2x+x2=(1+x)21+2x+x^2 = (1+x)^2. D(x)=(1+x)21xx211+xx21x1+xD(x) = (1+x)^2 \begin{vmatrix} 1 & x & x^2 \\ 1 & 1+x & x^2 \\ 1 & x & 1+x \end{vmatrix}

Now, apply row operations to simplify further: R2R2R1R_2 \to R_2 - R_1 R3R3R1R_3 \to R_3 - R_1 D(x)=(1+x)21xx20(1+x)xx2x20xx(1+x)x2D(x) = (1+x)^2 \begin{vmatrix} 1 & x & x^2 \\ 0 & (1+x)-x & x^2-x^2 \\ 0 & x-x & (1+x)-x^2 \end{vmatrix} D(x)=(1+x)21xx2010001+xx2D(x) = (1+x)^2 \begin{vmatrix} 1 & x & x^2 \\ 0 & 1 & 0 \\ 0 & 0 & 1+x-x^2 \end{vmatrix}

This is an upper triangular matrix (or rather, its determinant can be easily evaluated by expanding along the first column). D(x)=(1+x)211001+xx2D(x) = (1+x)^2 \cdot 1 \cdot \begin{vmatrix} 1 & 0 \\ 0 & 1+x-x^2 \end{vmatrix} D(x)=(1+x)2(1(1+xx2)00)D(x) = (1+x)^2 (1 \cdot (1+x-x^2) - 0 \cdot 0) D(x)=(1+x)2(1+xx2)D(x) = (1+x)^2 (1+x-x^2)

Expand the expression: D(x)=(1+2x+x2)(1+xx2)D(x) = (1+2x+x^2)(1+x-x^2) D(x)=1(1+xx2)+2x(1+xx2)+x2(1+xx2)D(x) = 1(1+x-x^2) + 2x(1+x-x^2) + x^2(1+x-x^2) D(x)=(1+xx2)+(2x+2x22x3)+(x2+x3x4)D(x) = (1+x-x^2) + (2x+2x^2-2x^3) + (x^2+x^3-x^4)

Combine like terms: D(x)=x4+(2x3+x3)+(x2+2x2+x2)+(x+2x)+1D(x) = -x^4 + (-2x^3+x^3) + (-x^2+2x^2+x^2) + (x+2x) + 1 D(x)=x4x3+2x2+3x+1D(x) = -x^4 - x^3 + 2x^2 + 3x + 1

We are given that D(x)=155(xα1)(xα2)(xα3)(xα4)D(x) = -\frac{1}{55}(x-\alpha_1)(x-\alpha_2)(x-\alpha_3)(x-\alpha_4). Let P(x)=(xα1)(xα2)(xα3)(xα4)P(x) = (x-\alpha_1)(x-\alpha_2)(x-\alpha_3)(x-\alpha_4). Then D(x)=155P(x)D(x) = -\frac{1}{55} P(x). This implies P(x)=55D(x)P(x) = -55 D(x). Substitute the expression for D(x)D(x): P(x)=55(x4x3+2x2+3x+1)P(x) = -55 (-x^4 - x^3 + 2x^2 + 3x + 1) P(x)=55x4+55x3110x2165x55P(x) = 55x^4 + 55x^3 - 110x^2 - 165x - 55

The polynomial P(x)P(x) has roots α1,α2,α3,α4\alpha_1, \alpha_2, \alpha_3, \alpha_4. For a polynomial anxn+an1xn1++a1x+a0=0a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = 0, the product of the roots is given by (1)na0an(-1)^n \frac{a_0}{a_n}. In our case, n=4n=4. The polynomial is 55x4+55x3110x2165x55=055x^4 + 55x^3 - 110x^2 - 165x - 55 = 0. Here, a4=55a_4 = 55 (the coefficient of x4x^4) and a0=55a_0 = -55 (the constant term). The product of the roots α1α2α3α4\alpha_1\alpha_2\alpha_3\alpha_4 is: α1α2α3α4=(1)4a0a4=(1)5555=1\alpha_1\alpha_2\alpha_3\alpha_4 = (-1)^4 \frac{a_0}{a_4} = (1) \frac{-55}{55} = -1.

We need to find the value of α1×α2×α3×α4|\alpha_1 \times \alpha_2 \times \alpha_3 \times \alpha_4|. α1×α2×α3×α4=1=1|\alpha_1 \times \alpha_2 \times \alpha_3 \times \alpha_4| = |-1| = 1.