Question
Question: Let $\begin{vmatrix} 1+x & x & x^2 \\ x & 1+x & x^2 \\ x^2 & x & 1+x \end{vmatrix}$ = $-\frac{1}{5...
Let
1+xxx2x1+xxx2x21+x
= −551(x−α1)(x−α2)(x−α3)(x−α4) be an identity in x, where α1, α2, α3, α4 are independent of x. The value of ∣α1×α2×α3×α4∣ is

1
Solution
Let the given determinant be D(x).
D(x)=1+xxx2x1+xxx2x21+x
To evaluate the determinant, we apply column operations: C1→C1+C2+C3 D(x)=(1+x)+x+x2x+(1+x)+x2x2+x+(1+x)x1+xxx2x21+x D(x)=1+2x+x21+2x+x21+2x+x2x1+xxx2x21+x
Factor out (1+2x+x2) from the first column. Note that 1+2x+x2=(1+x)2. D(x)=(1+x)2111x1+xxx2x21+x
Now, apply row operations to simplify further: R2→R2−R1 R3→R3−R1 D(x)=(1+x)2100x(1+x)−xx−xx2x2−x2(1+x)−x2 D(x)=(1+x)2100x10x201+x−x2
This is an upper triangular matrix (or rather, its determinant can be easily evaluated by expanding along the first column). D(x)=(1+x)2⋅1⋅1001+x−x2 D(x)=(1+x)2(1⋅(1+x−x2)−0⋅0) D(x)=(1+x)2(1+x−x2)
Expand the expression: D(x)=(1+2x+x2)(1+x−x2) D(x)=1(1+x−x2)+2x(1+x−x2)+x2(1+x−x2) D(x)=(1+x−x2)+(2x+2x2−2x3)+(x2+x3−x4)
Combine like terms: D(x)=−x4+(−2x3+x3)+(−x2+2x2+x2)+(x+2x)+1 D(x)=−x4−x3+2x2+3x+1
We are given that D(x)=−551(x−α1)(x−α2)(x−α3)(x−α4). Let P(x)=(x−α1)(x−α2)(x−α3)(x−α4). Then D(x)=−551P(x). This implies P(x)=−55D(x). Substitute the expression for D(x): P(x)=−55(−x4−x3+2x2+3x+1) P(x)=55x4+55x3−110x2−165x−55
The polynomial P(x) has roots α1,α2,α3,α4. For a polynomial anxn+an−1xn−1+⋯+a1x+a0=0, the product of the roots is given by (−1)nana0. In our case, n=4. The polynomial is 55x4+55x3−110x2−165x−55=0. Here, a4=55 (the coefficient of x4) and a0=−55 (the constant term). The product of the roots α1α2α3α4 is: α1α2α3α4=(−1)4a4a0=(1)55−55=−1.
We need to find the value of ∣α1×α2×α3×α4∣. ∣α1×α2×α3×α4∣=∣−1∣=1.