Question
Mathematics Question on Vector Algebra
Let
a,b,c be three non-coplanar vectors such that
a×b=4c,b×c=9a and c×a=αb,α>0.
If
a+b+c=361,
then α is equal to___.
Answer
Given,
a×b=4⋅c⋯(i)
b×c=9⋅a⋯(ii)
c×a=α⋅b⋯(iii)
Taking dot products with c,a,b, we get
a⋅b=b⋅c=c⋅a=0
Hence,
(i)⇒a⋅b=4⋅c⋯(iv)
(ii)⇒b⋅c=9⋅a⋯(v)
(iii)⇒c⋅a=α⋅b⋯(vi)
Multiplying (iv), (v) and (vi)
⇒a⋅b⋅c=36α⋯(vii)
Dividing (vii) by (iv)
⇒ c2=9α⇒c=3α⋯(viii)
Dividing (vii) by (v)
⇒ ∣a∣2=4α⇒a=2α
Dividing (viii) by (vi)
⇒ b2=36⇒b=6
Now, 3α+2α+6=361⇒α=36−43