Solveeit Logo

Question

Mathematics Question on Sets

Let S=[π,π2)[π2,π4,3π4,π4].\begin{array}{l} S=\left[-\pi, \frac{\pi}{2}\right)-\left[-\frac{\pi}{2},-\frac{\pi}{4},-\frac{3\pi}{4},\frac{\pi}{4}\right].\end{array}Then the number of elements in the set \begin{array}{l} A=\left\\{\theta\in S:\tan\theta\left(1+\sqrt{5}\tan\left(2\theta\right)\right)=\sqrt{5}-\tan\left(2\theta\right) \right\\} \end{array}is ________.

Answer

Here, tan α=5\begin{array}{l} tan~\alpha =\sqrt{5}\end{array}

 tanθ=tanαtan2θ1+tanαtan2θ\begin{array}{l} \therefore\ \tan\theta=\frac{\tan\alpha-\tan2\theta}{1+\tan\alpha\tan2\theta} \end{array}

∴ tan θ = tan (α – 2θ)

α2θ=nπ+θα – 2θ = nπ + θ

3θ=αnπ3θ = α – nπ

 θ=α3nπ3 ; nZ\begin{array}{l} \Rightarrow\ \theta = \frac{\alpha}{3}-\frac{n\pi}{3}~;~n\in Z\end{array}

If θ [–π, π/2) then

n = 0, 1, 2, 3, 4 are acceptable

∴ 5 solutions.