Question
Mathematics Question on Definite Integral
Let
f(x)=min[x–1],[x–2],….,[x–10]
where [t] denotes the greatest integer ≤ t. Then
0∫10f(x)dx+0∫10(f(x))2dx+0∫10∣f(x)∣dx
is equal to ________.
Answer
∵f(x)=min[x–1],[x–2],…..,[x–10]=[x–10]
Also,\begin{array}{l}\left|f\left(x\right)\right|=\left\\{\begin{matrix}-f\left(x\right), & \text{if } x\leq 10 \\\f\left(x\right), & \text{if } x \geq 10 \\\\\end{matrix}\right.\end{array}
∴ 0∫10f(x)dx+0∫10(f(x))2dx+0∫10(−f(x))dx
=0∫10(f(x))2dx
\begin{array}{l}= 10^2 + 9^2 + 8^2 + …… + 1^2\\\ =\frac{10\times11\times21}{6} \\\= 385\end{array}