Solveeit Logo

Question

Mathematics Question on Maxima and Minima

Let
f(x)=3(x22)3+4,xR.\begin{array}{l} f\left(x\right)=3^{\left(x^2-2\right)^3+4},x\in \mathbb{R}.\end{array}
Then which of the following statements are true?
P : x = 0 is a point of local minima of f
Q : x = √2 is a point of inflection of f
R : f ′ is increasing for x > √2

A

Only P and Q

B

Only P and R

C

Only Q and R

D

All P, Q and R

Answer

All P, Q and R

Explanation

Solution

f(x)=3(x22)3+4,xR\begin{array}{l} f\left(x\right)=3^{\left(x^2-2\right)^3+4}, x\in R \end{array}
f(x)=81.3(x22)3\begin{array}{l} f\left(x\right)=81.3^{\left(x^2-2\right)^3} \end{array}
f(x)=81.3(x22)3ln2.3(x22)2x\begin{array}{l} f’\left(x\right)=81.3^{\left(x^2-2\right)^3}\text{ln}2.3\left(x^2-2\right)2x\end{array}
=(486 ln2)(3(x22)3(x22)x)\begin{array}{l} =\left(486\ \text{ln}2\right)\left(3^{\left(x^2-2\right)^3}\left(x^2-2\right)x\right)\end{array}


x = 0 is the local minima.
f ′′(x) = (486 ln2)
(3(x22)3(x22)(5x22+6x2ln3(x22)))\begin{array}{l} \begin{pmatrix}3^{\left(x^2-2\right)^3}\cdot\left(x^2-2\right) \\\\\left(5x^2-2+6x^2\text{ln}3\left(x^2-2\right)\right)\end{pmatrix}\end{array}
f(x)=0     x=2\begin{array}{l} f”\left(x\right)=0~~~~~x=\sqrt{2}\end{array}
f(2+)>0\begin{array}{l} f”\left(\sqrt{2}^+\right)>0\end{array}
x=2\begin{array}{l} \Rightarrow x=\sqrt{2}\end{array}
is point of inflection
f(x)>0  x>2\begin{array}{l} f”\left(x\right)>0~\forall~x>\sqrt{2}\end{array}
f ′(x) is increasing for x>2x > \sqrt2