Question
Mathematics Question on Matrices
Let A=1\2−1α and B=β\110,α,β∈R.
Let α1 be the value of α which satisfies
(A+B)2=A2+2\222
and α2 be the value of α which satisfies
(A+B)2=B2.
Then ∣α1–α2∣ is equal to _________.
Answer
∵(A+B)2=A2+B2+AB+BA
=A2+2\222
∴B2+AB+BA=2\222 …(1)
AB=1\2−1αβ\110=β−1α+2β12
BA=β\1101\2−1α=β+2\1α–β−1
B2=β\110β\110=β2+1ββ1
By (1) we get
β2+2β+2α+3β+1α+12=2\222
∴α=1,β=0,⇒α1=1, Similarly If A 2 + AB + BA = 0 then
A2=1\2−1α1\2−1α=−1\2+2α−1−αα2−2
2βα+2β+1+2+2αα–β+1−1−αα2−2+1=0\000
⇒β=0 and α=–1⇒α2=–1
∴∣α1–α2∣=∣2∣=2