Question
Question: Let α, β be the roots of \(x^{2} - x + p = 0\) and γ, δ be root of \(x^{2} - 4x + q = 0\). If α, β, ...
Let α, β be the roots of x2−x+p=0 and γ, δ be root of x2−4x+q=0. If α, β, γ, δ are in G.P., then the integral value of p and q respectively are
A
– 2, – 32
B
– 2, 3
C
– 6, 3
D
– 6, – 32
Answer
– 2, – 32
Explanation
Solution
α+β=1, αβ=p, γ+δ=4, γδ=q
Since α, β, γ, δ are in G.P.
r=β/α=γ/β=δ/γ
α+αr=1 ⇒ α(1+r)=1, α(r2+r3)=4 ⇒ α.r2(1+r)=4
So r2=4 ⇒ r=±2
If r=2, α+2α=1 ⇒ α=1/3 and r=−2, α−2α=1
⇒ α=−1
But p=αβ∈I ∴ r=−2,α=−1
∴p=−2, q=α2r5=1(−2)5=−32