Solveeit Logo

Question

Question: Let μbe the coefficient of friction between blocks of mass m and M, The pulleys are frictionless and...

Let μbe the coefficient of friction between blocks of mass m and M, The pulleys are frictionless and strings are massless. Acceleration of mass m is

A

5mgM+5 m+2μm\frac { \sqrt { 5 } \mathrm { mg } } { \mathrm { M } + \sqrt { 5 } \mathrm {~m} + 2 \mu \mathrm { m } }

B

2mgM+5m+2μm\frac { 2 m g } { M + 5 m + 2 \mu m }

C

25mgM+5 m+2μm\frac { 2 \sqrt { 5 } \mathrm { mg } } { \mathrm { M } + 5 \mathrm {~m} + 2 \mu \mathrm { m } }

D

52mgM+5m+2μm\frac { 5 \sqrt { 2 } m g } { M + \sqrt { 5 } m + \sqrt { 2 } \mu \mathrm { m } }

Answer

25mgM+5 m+2μm\frac { 2 \sqrt { 5 } \mathrm { mg } } { \mathrm { M } + 5 \mathrm {~m} + 2 \mu \mathrm { m } }

Explanation

Solution

acceleration of mass m is a = ax2+ay2\sqrt { \mathrm { a } _ { \mathrm { x } } ^ { 2 } + \mathrm { a } _ { \mathrm { y } } ^ { 2 } }

Various force equations are

2T – N = max

N = max

and mg - μN – T = may

Solving ax = 2mgM+5m+2μm\frac { 2 m g } { M + 5 m + 2 \mu m }

and ay = 4mgM+5m+2μm\frac { 4 m g } { M + 5 m + 2 \mu m }

∴ a = ax2+ay2\sqrt { \mathrm { a } _ { \mathrm { x } } ^ { 2 } + \mathrm { a } _ { \mathrm { y } } ^ { 2 } }

= 25mgM+5 m+2μm\frac { 2 \sqrt { 5 } \mathrm { mg } } { \mathrm { M } + 5 \mathrm {~m} + 2 \mu \mathrm { m } }