Solveeit Logo

Question

Question: Let ƒ be a positive function and I<sub>1</sub> = \(\int _ { 1 - \mathrm { k } } ^ { \mathrm { k } }...

Let ƒ be a positive function and

I1 = 1kkxf(x(1x))\int _ { 1 - \mathrm { k } } ^ { \mathrm { k } } \mathrm { x } f ( \mathrm { x } ( 1 - \mathrm { x } ) )dx, I2 = dx where 2k – 1 > 0 then I1/I2 is -

A

2

B

k

C

½

D

1

Answer

½

Explanation

Solution

Since abf(x)\int _ { \mathrm { a } } ^ { \mathrm { b } } f ( \mathrm { x } ) dx = abf(a+bx)\int _ { a } ^ { b } f ( a + b - x ) dx, we have

I1 = ƒ ((k + 1 – k – x) (1

–(k + 1 – k – x)) dx

= ƒ((1 – x)x) dx

= 1kkf((1x))\int _ { 1 - \mathrm { k } } ^ { \mathrm { k } } f ( ( 1 - \mathrm { x } ) ) dx – 1kkxf((1x)x)\int _ { 1 - \mathrm { k } } ^ { \mathrm { k } } \mathrm { x } f ( ( 1 - \mathrm { x } ) \mathrm { x } ) dx = I2 – I1.

So 2I1 = I2 and I1/I2 = 1/2.