Question
Question: Let be a positive function and I<sub>1</sub> = \(\int _ { 1 - \mathrm { k } } ^ { \mathrm { k } }...
Let be a positive function and
I1 = ∫1−kkxf(x(1−x))dx, I2 = dx where 2k – 1 > 0 then I1/I2 is -
A
2
B
k
C
½
D
1
Answer
½
Explanation
Solution
Since ∫abf(x) dx = ∫abf(a+b−x) dx, we have
I1 = ((k + 1 – k – x) (1
–(k + 1 – k – x)) dx
= ((1 – x)x) dx
= ∫1−kkf((1−x)) dx – ∫1−kkxf((1−x)x) dx = I2 – I1.
So 2I1 = I2 and I1/I2 = 1/2.