Solveeit Logo

Question

Question: Let ƒ be a function such that ƒ(x + y) = ƒ(x) + ƒ(y) for all x and y and ƒ(x) = (2x<sup>2</sup> + 3x...

Let ƒ be a function such that ƒ(x + y) = ƒ(x) + ƒ(y) for all x and y and ƒ(x) = (2x2 + 3x) g(x) for all x where g(x) is continuous and g(0) = 3. Then ƒ′(x) is equal to –

A

9

B

3

C

6

D

None of these

Answer

9

Explanation

Solution

ƒ′(x) = Limh0\operatorname { Lim } _ { \mathrm { h } \rightarrow 0 } ƒ(x+h)–ƒ(x)h\frac{ƒ(x + h)–ƒ(x)}{h}

= Limh0\operatorname { Lim } _ { \mathrm { h } \rightarrow 0 } ƒ(x)+ƒ(h)–ƒ(x)h\frac{ƒ(x) + ƒ(h)–ƒ(x)}{h}

= Limh0\operatorname { Lim } _ { \mathrm { h } \rightarrow 0 } ƒ(h)h\frac{ƒ(h)}{h}

= Limh0\operatorname { Lim } _ { \mathrm { h } \rightarrow 0 } (2h2+3h)g(h)h\frac{(2h^{2} + 3h)g(h)}{h} = Limh0\underset{h \rightarrow 0}{Lim} (2h + 3) g(h)

= (0 + 3) g(0)

= 3g (0)

= 3.3

= 9.