Solveeit Logo

Question

Question: Let BC be the chord of contact of the tangents from a point A to the circle x<sup>2</sup> + y<sup>2<...

Let BC be the chord of contact of the tangents from a point A to the circle x2 + y2 = 1.P is any point on the arc BC. Let PX, PY, PZ be the lengths of perpendiculars from P on the AB, BC and CA respectively then PX, PY, PZ are in

A

A.P.

B

G.P.

C

H.P.

D

None of these

Answer

G.P.

Explanation

Solution

Let A be (0, a) Ž equation of BC is ay = 1

Ž B and C are (α21α,1α)\left( \frac{- \sqrt{\alpha^{2} - 1}}{\alpha},\frac{1}{\alpha} \right)

and (α21α,1α)\left( \frac{\sqrt{\alpha^{2} - 1}}{\alpha},\frac{1}{\alpha} \right)

Ž Equation of AC and BC are

α21α\frac{- \sqrt{\alpha^{2} - 1}}{\alpha}x +yα\frac{y}{\alpha}= 1 and α21α\frac{\sqrt{\alpha^{2} - 1}}{\alpha}x + yα\frac{y}{\alpha}= 1

and PZ = cosθα21α+sinθα1\left| \cos\theta\frac{\sqrt{\alpha^{2} - 1}}{\alpha} + \frac{\sin\theta}{\alpha} - 1 \right|where P ŗ (sin q, cos q)

Ž PY2 = PX. PZ