Solveeit Logo

Question

Question: Let $\bar{z_0},\bar{z_1},\bar{z_3},...,\bar{z_n}$ be complex numbers such that $(k+1)\bar{z}_{k+1}-i...

Let z0ˉ,z1ˉ,z3ˉ,...,znˉ\bar{z_0},\bar{z_1},\bar{z_3},...,\bar{z_n} be complex numbers such that (k+1)zˉk+1i(nk)zkˉ=0(k+1)\bar{z}_{k+1}-i(n-k)\bar{z_k}=0 kϵ{0,1,2,...,n1}k\epsilon\{0,1,2,...,n-1\}. Here i=1i=\sqrt{-1}. Consider the statements PP and QQ below:

A

PP is true and QQ is false

B

PP is true and QQ is true

C

PP is false and QQ is true

D

PP is false and QQ is false

Answer

(C)

Explanation

Solution

The recurrence relation is given by (k+1)zˉk+1i(nk)zkˉ=0(k+1)\bar{z}_{k+1}-i(n-k)\bar{z_k}=0 for k{0,1,...,n1}k \in \{0, 1, ..., n-1\}. For n=10n=10, we have (k+1)zˉk+1i(10k)zkˉ=0(k+1)\bar{z}_{k+1}-i(10-k)\bar{z_k}=0 for k{0,1,...,9}k \in \{0, 1, ..., 9\}. Taking the conjugate of this equation, we get (k+1)zk+1i(10k)zkˉ=0(k+1)z_{k+1}-\overline{i(10-k)\bar{z_k}}=0. (k+1)zk+1(i)(10k)zk=0(k+1)z_{k+1}-(-i)(10-k)z_k=0. (k+1)zk+1+i(10k)zk=0(k+1)z_{k+1}+i(10-k)z_k=0. zk+1=i(10k)k+1zkz_{k+1} = \frac{-i(10-k)}{k+1}z_k for k=0,1,...,9k=0, 1, ..., 9.

We can express zkz_k in terms of z0z_0 by iterating this recurrence: z1=i(100)1z0=10iz0=(101)(i)1z0z_1 = \frac{-i(10-0)}{1}z_0 = -10iz_0 = \binom{10}{1}(-i)^1 z_0. z2=i(101)2z1=9i2(10iz0)=90i22z0=45z0=(102)(i)2z0z_2 = \frac{-i(10-1)}{2}z_1 = \frac{-9i}{2}(-10iz_0) = \frac{90i^2}{2}z_0 = -45z_0 = \binom{10}{2}(-i)^2 z_0. z3=i(102)3z2=8i3(45z0)=120iz0=(103)(i)3z0z_3 = \frac{-i(10-2)}{3}z_2 = \frac{-8i}{3}(-45z_0) = 120iz_0 = \binom{10}{3}(-i)^3 z_0. In general, we can show by induction that zk=(10k)(i)kz0z_k = \binom{10}{k}(-i)^k z_0 for k=0,1,...,10k=0, 1, ..., 10. For k=0k=0, z0=(100)(i)0z0=11z0=z0z_0 = \binom{10}{0}(-i)^0 z_0 = 1 \cdot 1 \cdot z_0 = z_0. Assuming zk=(10k)(i)kz0z_k = \binom{10}{k}(-i)^k z_0 holds for some k{0,1,...,9}k \in \{0, 1, ..., 9\}, zk+1=i(10k)k+1zk=i(10k)k+1(10k)(i)kz0=i(10k)k+110!k!(10k)!(i)kz0z_{k+1} = \frac{-i(10-k)}{k+1}z_k = \frac{-i(10-k)}{k+1} \binom{10}{k}(-i)^k z_0 = \frac{-i(10-k)}{k+1} \frac{10!}{k!(10-k)!}(-i)^k z_0 zk+1=10!(k+1)k!(10k1)!(i)k+1z0=10!(k+1)!(10(k+1))!(i)k+1z0=(10k+1)(i)k+1z0z_{k+1} = \frac{10!}{(k+1)k!(10-k-1)!} (-i)^{k+1} z_0 = \frac{10!}{(k+1)!(10-(k+1))!} (-i)^{k+1} z_0 = \binom{10}{k+1}(-i)^{k+1} z_0. So the formula zk=(10k)(i)kz0z_k = \binom{10}{k}(-i)^k z_0 is correct for k=0,1,...,10k=0, 1, ..., 10.

Statement P: The z0z_0 such that z0+z1+z2+...+z10=210z_0+z_1+z_2+...+z_{10}=2^{10} is (1i)10(1-i)^{10}. The sum is k=010zk=k=010(10k)(i)kz0=z0k=010(10k)(i)k\sum_{k=0}^{10} z_k = \sum_{k=0}^{10} \binom{10}{k}(-i)^k z_0 = z_0 \sum_{k=0}^{10} \binom{10}{k}(-i)^k. By the binomial theorem, k=010(10k)(i)k=(1+(i))10=(1i)10\sum_{k=0}^{10} \binom{10}{k}(-i)^k = (1+(-i))^{10} = (1-i)^{10}. So, the sum is z0(1i)10z_0 (1-i)^{10}. We are given that the sum is 2102^{10}. z0(1i)10=210z_0 (1-i)^{10} = 2^{10}. z0=210(1i)10=(21i)10z_0 = \frac{2^{10}}{(1-i)^{10}} = \left(\frac{2}{1-i}\right)^{10}. 21i=2(1+i)(1i)(1+i)=2(1+i)1i2=2(1+i)1+1=2(1+i)2=1+i\frac{2}{1-i} = \frac{2(1+i)}{(1-i)(1+i)} = \frac{2(1+i)}{1-i^2} = \frac{2(1+i)}{1+1} = \frac{2(1+i)}{2} = 1+i. So, z0=(1+i)10z_0 = (1+i)^{10}. Statement P says that z0=(1i)10z_0 = (1-i)^{10}. Since (1+i)10(1i)10(1+i)^{10} \ne (1-i)^{10} (e.g., 1+i10=(2)10=32|1+i|^{10} = (\sqrt{2})^{10} = 32, 1i10=(2)10=32|1-i|^{10} = (\sqrt{2})^{10} = 32, but arg((1+i)10)=10π4=5π2\arg((1+i)^{10}) = 10 \frac{\pi}{4} = \frac{5\pi}{2} and arg((1i)10)=10(π4)=5π2\arg((1-i)^{10}) = 10 (-\frac{\pi}{4}) = -\frac{5\pi}{2}, which are different modulo 2π2\pi), statement P is false.

Statement Q: z02+z12+z22+...+z102(31)1010!|z_0|^2+|z_1|^2+|z_2|^2+...+|z_{10}|^2 \ge \frac{(31)^{10}}{10!}. We need to evaluate this for the specific zkz_k sequence defined by the sum in statement P. For this sequence, z0=(1+i)10z_0 = (1+i)^{10}. z0=(1+i)10=1+i10=(12+12)10=(2)10=25=32|z_0| = |(1+i)^{10}| = |1+i|^{10} = (\sqrt{1^2+1^2})^{10} = (\sqrt{2})^{10} = 2^5 = 32. z02=322=1024=210|z_0|^2 = 32^2 = 1024 = 2^{10}.

We have zk=(10k)(i)kz0=(10k)ikz0=(10k)(1)kz0=(10k)z0|z_k| = \left|\binom{10}{k}(-i)^k z_0\right| = \binom{10}{k} |-i|^k |z_0| = \binom{10}{k} (1)^k |z_0| = \binom{10}{k} |z_0|. So, zk2=((10k))2z02|z_k|^2 = \left(\binom{10}{k}\right)^2 |z_0|^2. The sum of squared magnitudes is k=010zk2=k=010((10k))2z02=z02k=010((10k))2\sum_{k=0}^{10} |z_k|^2 = \sum_{k=0}^{10} \left(\binom{10}{k}\right)^2 |z_0|^2 = |z_0|^2 \sum_{k=0}^{10} \left(\binom{10}{k}\right)^2. Using the identity k=0n(nk)2=(2nn)\sum_{k=0}^{n} \binom{n}{k}^2 = \binom{2n}{n}, for n=10n=10, we have k=010(10k)2=(2010)\sum_{k=0}^{10} \binom{10}{k}^2 = \binom{20}{10}. The sum of squared magnitudes is z02(2010)|z_0|^2 \binom{20}{10}. Substituting z02=210|z_0|^2 = 2^{10}, the sum is 210(2010)2^{10} \binom{20}{10}.

Statement Q is 210(2010)(31)1010!2^{10} \binom{20}{10} \ge \frac{(31)^{10}}{10!}. 21020!10!10!(31)1010!2^{10} \frac{20!}{10!10!} \ge \frac{(31)^{10}}{10!}. Multiply by 10!10!: 21020!10!(31)102^{10} \frac{20!}{10!} \ge (31)^{10}. 20!10!=20×19×18×17×16×15×14×13×12×11\frac{20!}{10!} = 20 \times 19 \times 18 \times 17 \times 16 \times 15 \times 14 \times 13 \times 12 \times 11. The inequality is 210×(20×19×...×11)(31)102^{10} \times (20 \times 19 \times ... \times 11) \ge (31)^{10}. (2×20)×(2×19)×...×(2×11)(2 \times 20) \times (2 \times 19) \times ... \times (2 \times 11) is not correct. The inequality is 210×(20×19×...×11)31102^{10} \times (20 \times 19 \times ... \times 11) \ge 31^{10}. Let's rewrite the product on the left side: 20×19×...×11=j=1120j20 \times 19 \times ... \times 11 = \prod_{j=11}^{20} j. We are comparing 210j=1120j2^{10} \prod_{j=11}^{20} j with 311031^{10}. Let's compare the terms: 20>31/2=15.520 > 31/2 = 15.5 19>15.519 > 15.5 18>15.518 > 15.5 17>15.517 > 15.5 16>15.516 > 15.5 15<15.515 < 15.5 14<15.514 < 15.5 ... 11<15.511 < 15.5 Let's rewrite the product 20×19×...×1120 \times 19 \times ... \times 11 as (15.5+4.5)(15.5+3.5)...(15.5+0.5)(15.50.5)...(15.54.5)(15.5+4.5)(15.5+3.5)...(15.5+0.5)(15.5-0.5)...(15.5-4.5). The geometric mean of the terms 11,12,...,2011, 12, ..., 20 is 11×12×...×2010\sqrt[10]{11 \times 12 \times ... \times 20}. This is greater than the arithmetic mean 11+...+2010=15510=15.5\frac{11+...+20}{10} = \frac{155}{10} = 15.5. So, 11×12×...×2010>15.5\sqrt[10]{11 \times 12 \times ... \times 20} > 15.5. j=1120j>(15.5)10=(31/2)10=3110210\prod_{j=11}^{20} j > (15.5)^{10} = (31/2)^{10} = \frac{31^{10}}{2^{10}}. Multiplying by 2102^{10}, we get 210j=1120j>31102^{10} \prod_{j=11}^{20} j > 31^{10}. So, 21020!10!>31102^{10} \frac{20!}{10!} > 31^{10}. This means 21020!10!10!>311010!2^{10} \frac{20!}{10!10!} > \frac{31^{10}}{10!}. The inequality in statement Q is 210(2010)(31)1010!2^{10} \binom{20}{10} \ge \frac{(31)^{10}}{10!}. Since we found 210(2010)>(31)1010!2^{10} \binom{20}{10} > \frac{(31)^{10}}{10!}, the inequality holds. Statement Q is true.

Statement P is false and statement Q is true.