Solveeit Logo

Question

Question: Let $\bar{a}$ and $\bar{b}$ be two unit vectors such that $\bar{a} \cdot \bar{b}=0$. For some $x, y ...

Let aˉ\bar{a} and bˉ\bar{b} be two unit vectors such that aˉbˉ=0\bar{a} \cdot \bar{b}=0. For some x,yRx, y \in R, let cˉ=xaˉ+ybˉ+(aˉ×bˉ)\bar{c} = x\bar{a} + y\bar{b} + (\bar{a} \times \bar{b}). If cˉ=2|\bar{c}|=2 and the vector cˉ\bar{c} is inclined at the same angle α\alpha to both aˉ\bar{a} and bˉ\bar{b}, then the value of x2+y2+8cos2αx^2+y^2+8\cos^2\alpha is equal to:

A

3

B

4

C

5

D

6

Answer

6

Explanation

Solution

Given that aˉ\bar{a} and bˉ\bar{b} are unit vectors with aˉbˉ=0\bar{a} \cdot \bar{b} = 0, they form an orthonormal set. Let dˉ=aˉ×bˉ\bar{d} = \bar{a} \times \bar{b}. Since aˉ\bar{a} and bˉ\bar{b} are orthogonal unit vectors, dˉ=aˉbˉsin(π/2)=111=1|\bar{d}| = |\bar{a}||\bar{b}|\sin(\pi/2) = 1 \cdot 1 \cdot 1 = 1. Also, dˉ\bar{d} is orthogonal to both aˉ\bar{a} and bˉ\bar{b}, meaning dˉaˉ=0\bar{d} \cdot \bar{a} = 0 and dˉbˉ=0\bar{d} \cdot \bar{b} = 0. Thus, {aˉ,bˉ,dˉ}\{\bar{a}, \bar{b}, \bar{d}\} forms an orthonormal basis.

We are given cˉ=xaˉ+ybˉ+dˉ\bar{c} = x\bar{a} + y\bar{b} + \bar{d} and cˉ=2|\bar{c}|=2. Squaring the magnitude of cˉ\bar{c}: cˉ2=(xaˉ+ybˉ+dˉ)(xaˉ+ybˉ+dˉ)|\bar{c}|^2 = (x\bar{a} + y\bar{b} + \bar{d}) \cdot (x\bar{a} + y\bar{b} + \bar{d}) Using the orthonormality of aˉ,bˉ,dˉ\bar{a}, \bar{b}, \bar{d}: cˉ2=x2aˉ2+y2bˉ2+dˉ2+2xy(aˉbˉ)+2x(aˉdˉ)+2y(bˉdˉ)|\bar{c}|^2 = x^2|\bar{a}|^2 + y^2|\bar{b}|^2 + |\bar{d}|^2 + 2xy(\bar{a} \cdot \bar{b}) + 2x(\bar{a} \cdot \bar{d}) + 2y(\bar{b} \cdot \bar{d}) cˉ2=x2(1)+y2(1)+12+2xy(0)+2x(0)+2y(0)|\bar{c}|^2 = x^2(1) + y^2(1) + 1^2 + 2xy(0) + 2x(0) + 2y(0) cˉ2=x2+y2+1|\bar{c}|^2 = x^2 + y^2 + 1 Since cˉ=2|\bar{c}| = 2, we have cˉ2=4|\bar{c}|^2 = 4. So, x2+y2+1=4x^2 + y^2 + 1 = 4, which implies x2+y2=3x^2 + y^2 = 3.

Now, let α\alpha be the angle between cˉ\bar{c} and aˉ\bar{a}. The cosine of this angle is given by: cosα=cˉaˉcˉaˉ\cos\alpha = \frac{\bar{c} \cdot \bar{a}}{|\bar{c}||\bar{a}|} cosα=(xaˉ+ybˉ+dˉ)aˉ21\cos\alpha = \frac{(x\bar{a} + y\bar{b} + \bar{d}) \cdot \bar{a}}{2 \cdot 1} cosα=xaˉ2+y(bˉaˉ)+(dˉaˉ)2\cos\alpha = \frac{x|\bar{a}|^2 + y(\bar{b} \cdot \bar{a}) + (\bar{d} \cdot \bar{a})}{2} cosα=x(1)+y(0)+02=x2\cos\alpha = \frac{x(1) + y(0) + 0}{2} = \frac{x}{2} Thus, x=2cosαx = 2\cos\alpha.

Similarly, let α\alpha be the angle between cˉ\bar{c} and bˉ\bar{b}. cosα=cˉbˉcˉbˉ\cos\alpha = \frac{\bar{c} \cdot \bar{b}}{|\bar{c}||\bar{b}|} cosα=(xaˉ+ybˉ+dˉ)bˉ21\cos\alpha = \frac{(x\bar{a} + y\bar{b} + \bar{d}) \cdot \bar{b}}{2 \cdot 1} cosα=x(aˉbˉ)+ybˉ2+(dˉbˉ)2\cos\alpha = \frac{x(\bar{a} \cdot \bar{b}) + y|\bar{b}|^2 + (\bar{d} \cdot \bar{b})}{2} cosα=x(0)+y(1)+02=y2\cos\alpha = \frac{x(0) + y(1) + 0}{2} = \frac{y}{2} Thus, y=2cosαy = 2\cos\alpha.

Now we substitute x=2cosαx = 2\cos\alpha and y=2cosαy = 2\cos\alpha into the equation x2+y2=3x^2 + y^2 = 3: (2cosα)2+(2cosα)2=3(2\cos\alpha)^2 + (2\cos\alpha)^2 = 3 4cos2α+4cos2α=34\cos^2\alpha + 4\cos^2\alpha = 3 8cos2α=38\cos^2\alpha = 3

We need to find the value of x2+y2+8cos2αx^2+y^2+8\cos^2\alpha. We found x2+y2=3x^2+y^2 = 3 and 8cos2α=38\cos^2\alpha = 3. Therefore, x2+y2+8cos2α=3+3=6x^2+y^2+8\cos^2\alpha = 3 + 3 = 6.