Solveeit Logo

Question

Mathematics Question on complex numbers

Let zˉ\bar{z} denote the complex conjugate of a complex number zz. If zz is a non-zero complex number for which both real and imaginary parts of (zˉ)2+1z2(\bar{z})^2+\frac{1}{ z ^2} are integers, then which of the following is/are possible value(s) of z|z|?

A

(43+32052)14\left(\frac{43+3 \sqrt{205}}{2}\right)^{\frac{1}{4}}

B

(7+334)14\left(\frac{7+\sqrt{33}}{4}\right)^{\frac{1}{4}}

C

(9+654)14\left(\frac{9+\sqrt{65}}{4}\right)^{\frac{1}{4}}

D

(7+136)14\left(\frac{7+\sqrt{13}}{6}\right)^{\frac{1}{4}}

Answer

(43+32052)14\left(\frac{43+3 \sqrt{205}}{2}\right)^{\frac{1}{4}}

Explanation

Solution

The correct option is (A): (43+32052)14\left(\frac{43+3 \sqrt{205}}{2}\right)^{\frac{1}{4}}