Question
Mathematics Question on Limits
Let
β=limx→0αx(e3x−1)αx−(e3x−1)for someα∈R.
Then the value of α+β is
A
514
B
23
C
25
D
27
Answer
25
Explanation
Solution
The correct answer is (C) : 25
β=limx→0αx(e3x−1)αx−(e3x−1),α∈R.
=limx→0αx(3xe3x−1)3α−(3xe3x−1)
So, α = 3 (to make indeterminant form)
β=limx→03x1−(3xe3x−1)
=3x1−3x(3x+29x2+...)
=−9x2(29x2+31(3x)3+...)=2−1
∴α+β=3−21
=25