Solveeit Logo

Question

Mathematics Question on Matrices and Determinants

Let B=[13 15]B = \begin{bmatrix} 1 & 3 \\\ 1 & 5 \end{bmatrix} and AA be a 2×22 \times 2 matrix such that AB1=A1.AB^{-1} = A^{-1}. If BCB1=ABCB^{-1} = A and C4+αC2+βI=O,C^4 + \alpha C^2 + \beta I = O, then 2βα2\beta - \alpha is equal to:

A

16

B

2

C

8

D

10

Answer

10

Explanation

Solution

We are given the following matrix relations:
BCB1=ABCB^{-1} = A
(BCB1)(BCB1)=AA\Rightarrow (BCB^{-1})(BCB^{-1}) = A \cdot A
\Rightarrow BCI \cdot CB^{-1} = A^2 \quad \text{(since \( B^{-1}B = I )})
BC2B1=A2\Rightarrow BC^2 B^{-1} = A^2
B1(BC2B1)B=B1A2B\Rightarrow B^{-1}(BC^2 B^{-1})B = B^{-1}A^2B
B1C2B=B1A2B\Rightarrow B^{-1}C^2 B = B^{-1}A^2B

From the above relations, we can use the fact that:

C2=A1ABC2=BC^2 = A^{-1} \cdot A \cdot B \Rightarrow C^2 = B

Next, since AB1=A1AB^{-1} = A^{-1}, we can manipulate the expression for C2C^2:

AB1A=A1B1A=A1A1AB^{-1} \cdot A = A^{-1} \Rightarrow B^{-1}A = A^{-1} \cdot A^{-1}

Thus, C2C^2 and the matrix BB satisfy the characteristic equation:

C2λI=0|C^2 - \lambda I| = 0 BλI=0|B - \lambda I| = 0

Now, we solve the characteristic equation:
1λ3 15λ=0\begin{vmatrix} 1 - \lambda & 3 \\\ 1 & 5 - \lambda \end{vmatrix} = 0
(1λ)(5λ)3=0\Rightarrow (1 - \lambda)(5 - \lambda) - 3 = 0

λ26λ+53=0\Rightarrow \lambda^2 - 6\lambda + 5 - 3 = 0
λ26λ+2=0\Rightarrow \lambda^2 - 6\lambda + 2 = 0
β26β+2=0\Rightarrow \beta^2 - 6\beta + 2 = 0
C46C2+2I=0\Rightarrow C^4 - 6C^2 + 2I = 0

Thus, solving the equation gives us:
α=6,β=2\alpha = -6, \quad \beta = 2

Finally, we calculate:
2βα=2×2(6)=4+6=102\beta - \alpha = 2 \times 2 - (-6) = 4 + 6 = 10

Thus, the correct answer is:
10\boxed{10}