Question
Mathematics Question on Trigonometric Functions
Let B=2sin2x−cos2x, then
A
−1≤B≤3
B
0≤B≤2
C
−1≤B≤1
D
−2≤B≤2
Answer
−1≤B≤3
Explanation
Solution
2sin2x−cos2x=2sin2x−(1−2sin2x)=4sinx−1 and 0≤sin2x≤1⇔0≤4sin2x≤4 ⇔0−1≤4sin2x−1≤3
Let B=2sin2x−cos2x, then
−1≤B≤3
0≤B≤2
−1≤B≤1
−2≤B≤2
−1≤B≤3
2sin2x−cos2x=2sin2x−(1−2sin2x)=4sinx−1 and 0≤sin2x≤1⇔0≤4sin2x≤4 ⇔0−1≤4sin2x−1≤3