Solveeit Logo

Question

Question: Let a<sub>n</sub> = (log 3)<sup>n</sup>\(\sum_{r = 1}^{n}\frac{r^{2}}{r!(n - r)!}\), n ĪN. Then the ...

Let an = (log 3)nr=1nr2r!(nr)!\sum_{r = 1}^{n}\frac{r^{2}}{r!(n - r)!}, n ĪN. Then the sum of the series a1 + a2 + a3 + a4 + …. to  is –

A

(1 + log 3) (9 log 3)

B

(1 + log 3)

C

(1 – log 3) (9 log 3)

D

(1 + log 3) (log 3)

Answer

(1 + log 3) (9 log 3)

Explanation

Solution

We have,

an = (log 3)n r=1nr2r!(nr)!\sum_{r = 1}^{n}\frac{r^{2}}{r!(n - r)!}

= (log3)nn!\frac { ( \log 3 ) ^ { n } } { n ! } r=1nn!(nr)!r!r2\sum_{r = 1}^{n}{\frac{n!}{(n - r)!r!}r^{2}}

= (log3)nn!\frac { ( \log 3 ) ^ { n } } { n ! } r=1nnCr.r2\sum_{r = 1}^{n}{nC_{r}.r^{2}}

= (log3)nn!\frac{(\log 3)^{n}}{n!} [n(n – 1) 2n–2 + n · 2n–1]

[Q r=1nr2\sum_{r = 1}^{n}r^{2}· nCr = n(n–1) 2n–2 + n · 2n–1]

= (log3)nn!\frac{(\log 3)^{n}}{n!} [n (n – 1) + 2n] 2n–2

= 1(n2)!\frac{1}{(n - 2)!} (log 3)n · 2n–2 + 2(n1)!\frac{2}{(n - 1)!} (log 3)n · 2n–2

= (log 3)2 (2log3)n2(n2)!\frac{(2\log 3)^{n - 2}}{(n - 2)!}+ (log 3) (2log3)n1(n1)!\frac{(2\log 3)^{n - 1}}{(n - 1)!}

\ Required sum

= n=1an\sum_{n = 1}^{\infty}a_{n}

= (log 3)2 n=2(log9)n2(n2)!\sum_{n = 2}^{\infty}\frac{(\log 9)^{n - 2}}{(n - 2)!}+ (log 3) n=1(log9)n1(n1)!\sum_{n = 1}^{\infty}\frac{(\log 9)^{n - 1}}{(n - 1)!}

= (log 3)2 elog 9 + (log 3) elog 9

[n=1xn1(n1)!=n=2xn2(n2)!=ex]\left\lbrack \because\sum_{n = 1}^{\infty}{\frac{x^{n - 1}}{(n - 1)!} = \sum_{n = 2}^{\infty}{\frac{x^{n - 2}}{(n - 2)!} = e^{x}}} \right\rbrack

= (1 + log 3) (9 log 3)

Hence (1) is correct answe