Solveeit Logo

Question

Question: Let a<sub>n</sub> = (log 3)<sup>n</sup>\(\sum_{r = 1}^{n}\frac{r^{2}}{r!(n - r)!}\), n Ī N, Then the...

Let an = (log 3)nr=1nr2r!(nr)!\sum_{r = 1}^{n}\frac{r^{2}}{r!(n - r)!}, n Ī N, Then the sum of the series a1 + a2 + a3 + a3 + …. to  is –

A

(1 + log 3) (9 log 3)

B

(1 + log 3)

C

(1 – log 3) (9 log 3)

D

(1 + log 3) (log 3)

Answer

(1 + log 3) (9 log 3)

Explanation

Solution

We have,

an = (log 3)n r=1nr2r!(nr)!\sum_{r = 1}^{n}\frac{r^{2}}{r!(n - r)!}

= (log3)nn!\frac{(\log 3)^{n}}{n!} r=1nn!(nr)!r!r2\sum_{r = 1}^{n}{\frac{n!}{(n - r)!r!}r^{2}}

= (log3)nn!\frac { ( \log 3 ) ^ { n } } { n ! } r=1nnCrr2\sum_{r = 1}^{n}{nC_{r} \cdot r^{2}}

= (log3)nn!\frac{(\log 3)^{n}}{n!} [n(n – 1)2n–2 + n · 2n–1

[r=1nr2.nCr=n(n1)2n2+n.2n1]\left\lbrack \because\sum_{r = 1}^{n}{r^{2}.^{n}C_{r} = n(n - 1)2^{n - 2} + n.2^{n - 1}} \right\rbrack

= (log3)nn!\frac{(\log 3)^{n}}{n!} $$n(n – 1) + 2n]2n – 2

= 1(n2)!\frac{1}{(n - 2)!} (log 3)n · 2n–2 + 2(n1)!\frac{2}{(n - 1)!} (log 3)n · 2n–2

= (log 3)2 (2log3)n2(n2)!\frac{(2\log 3)^{n - 2}}{(n - 2)!}+ (log 3) (2log3)n1(n1)!\frac{(2\log 3)^{n - 1}}{(n - 1)!}

\ Required sum =n=1an\sum_{n = 1}^{\infty}a_{n}

= (log 3)2 n=2(log9)n2(n2)!\sum_{n = 2}^{\infty}\frac{(\log 9)^{n - 2}}{(n - 2)!}+ (log 3)

[\sum_{n = 1}^{\infty}\frac{(\log 9)^{n - 1}}{(n - 1)!}$$

= (log 3)2 elog 9 + (log 3)elog 9

[n=1xn1(n1)!=n=2(xn2)(n2)!=ex]\left\lbrack \because\sum_{n = 1}^{\infty}{\frac{x^{n - 1}}{(n - 1)!} = \sum_{n = 2}^{\infty}\frac{(x^{n - 2})}{(n - 2)!}} = e^{x} \right\rbrack

= (1 + log 3) (9 log 3)

Hence (1) is correct answer.