Question
Question: Let a<sub>k</sub> = (k<sup>2</sup> + 1) k !&b<sub>k</sub> = a<sub>1</sub> + a<sub>2</sub> + a<sub>3<...
Let ak = (k2 + 1) k !&bk = a1 + a2 + a3 …. + ak. If b100a100 = nm then n – m equals
A
100
B
99
C
98
D
None
Answer
99
Explanation
Solution
ak = (k2 + 1) k!
= (k (k + 1) – (k –1)) k!
= k (k + 1) k! – (k –1) k!
= k (k + 1) ! – (k – 1) k!
\ a1 = 2! – 0
a2 = 2.3! – 2!
a3 = 3. 4! – 2. 3!
ak = k (k + 1) –(k –1)k!
Adding
a1 + a2 …… +ak = k (k + 1)!
̃ bk = k (k + 1)!
\ bkak = k(k+1)!(k2+1)k!
bkak = k(k+1)k2+1
\ b100a100 = 1010010001 = nm
\ n – m = 99