Solveeit Logo

Question

Question: Let a<sub>1</sub>, a<sub>2</sub>,a<sub>3,</sub> …………be terms of an A.P. If \(\frac{a_{1} + a_{2} + ...

Let a1, a2,a3, …………be terms of an A.P. If

a1+a2+....+apa1+a2+....+aq\frac{a_{1} + a_{2} + .... + a_{p}}{a_{1} + a_{2} + .... + a_{q}}= p2q2\frac{p^{2}}{q^{2}}, p ¹ q, then a6a21\frac{a_{6}}{a_{21}} equals –

A

4111\frac{41}{11}

B

72\frac{7}{2}

C

27\frac{2}{7}

D

1141\frac{11}{41}

Answer

1141\frac{11}{41}

Explanation

Solution

a1+a2+....+apa1+a2+.....+aq\frac{a_{1} + a_{2} + .... + a_{p}}{a_{1} + a_{2} + ..... + a_{q}}= p2q2\frac{p^{2}}{q^{2}}

a1+a2+....+a6a1+a2+.....+aq\frac{a_{1} + a_{2} + .... + a_{6}}{a_{1} + a_{2} + ..... + a_{q}}= 62q2\frac{6^{2}}{q^{2}} …(i)

a1+a2+....+a5a1+a2+.....+aq\frac{a_{1} + a_{2} + .... + a_{5}}{a_{1} + a_{2} + ..... + a_{q}}= 52q2\frac{5^{2}}{q^{2}} …(ii)

on subtracting eqn. (i) – (ii)

a6a1+....+aq\frac{a_{6}}{a_{1} + .... + a_{q}}= 6252q2\frac{6^{2}–5^{2}}{q^{2}} ….(iii)

Similarlya21a1+....+aq\frac{a_{21}}{a_{1} + .... + a_{q}}= (21)2(20)2q2\frac{(21)^{2}–(20)^{2}}{q^{2}}....(iv)

Divide (iii) and (iv) a6a21\frac{a_{6}}{a_{21}} = 1141\frac{11}{41}